Skip to main content
Log in

Cellulose Fibers from Solutions of Bacterial Cellulose in N-Methylmorpholine N-Oxide

  • Published:
Fibre Chemistry Aims and scope

Fibers of bacterial cellulose were obtained for the first time from solutions in N-methylmorpholine N-oxide (NMMO) by using the concept of solid-phase dissolution of bacterial cellulose. The mechanism of solid-phase dissolution of bacterial cellulose in NMMO is examined with due regard to the structural and morphological characteristics of native bacterial cellulose. By investigating the structure of the fibers it was possible to reveal the different orientation of the main diffraction planes of the outer shell and inner part of the fiber reflecting the structural aspect of the shell–core morphology. The fibrillar morphology of the fiber was established by scanning electron microscopy. The thermal characteristics of the fibers of bacterial cellulose differ radically from the characteristics of fibers of plant origin in the preponderance of condensation processes that produce exo effects on the thermograms and lead to increase of the carbon residue. The mechanical characteristics of the obtained fibers were characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Z. A. Rogovin, Chemistry of Cellulose [in Russian], Khimiya, Moscow (1972), 520 pp.

  2. Z. A. Rogovin, L. S. Gal’braikh, Chemical Transformations and Modification of Cellulose [in Russian], Khimiya, Moscow (1979), 206 pp.

  3. I. Sulaeva, U. Henniges, et al., Biotechnol. Adv., 33, No. 8, 1547-1571 (2015).

    Article  CAS  Google Scholar 

  4. T. I. Gromovykh, V. S. Sadykova, et al., Appl. Biochem. Microbiol., 53,. No. 1, 59-66 (2017).

    Article  Google Scholar 

  5. M. Iguchi, S. Yamanaka, A. J. Budhiono, J. Mater. Sci., 35, No. 2, 261-270 (2000). DOI: https://doi.org/10.1023/A:1004775229149.

    Article  CAS  Google Scholar 

  6. A. Okiyama, H. Shirae, et al., Food Hydrocolloids, 6, No. 5, 471-477 (1992). DOI: https://doi.org/10.1016/S0268-005X(09)80032-5.

    Article  CAS  Google Scholar 

  7. Y. Jia, X. Wang, et al., Nanomaterials Nanotechnology, 7, 1-8 (2017). DOI: https://doi.org/10.1177/1847980417707172.

    Article  Google Scholar 

  8. Fan Mi Han, Biotechnology of Bacterial Cellulose Using Strain Producer Gluconacetobacter hansenii GH-1/2008: Author’s Abstract of Thesis [in Russian], 03.01.06. M. V. Lomonosov Moscow State University (2013), 25 pp.

  9. E. K. Gladysheva, Fundamental’nye Issledovaniya, No. 5 (Part.1), 53-57 (2015).

  10. T. I. Gromovykh, S. V. Lutsenko, et al., Inter-Medikal, 13, . No. 7, 4-9 (2015).

    Google Scholar 

  11. W. K. Czaja, D. J. Young, et al., Biomacromolecules, 8, No. 1, 1-12 (2007). DOI: https://doi.org/10.1021/bm060620d.

    Article  CAS  PubMed  Google Scholar 

  12. Y. Hu, J. M. Catchmark, Acta Biomaterialia, 7, No. 7, 2835-45 (2011). DOI: https://doi.org/10.1016/ j.actbio.2011.03.028.

  13. Y.-J. Lee, S.-J. An, et al., Materials, 10, No. 320, 1-13 (2017). DOI: https://doi.org/10.3390/ma10030320.

    Article  CAS  Google Scholar 

  14. L. K. Golova, V. G. Kulichikhin, S. P. Papkov, Vysokomol Soed., Ser. A, 27, No. 9, 1795-1809 (1986).

    Google Scholar 

  15. A. M. Bochek, Rus. J. Appl. Chemistry, 76, No. 11, 1711-1719 (2003). DOI: https://doi.org/10.1023/B:RJAC.0000018669.88546.56.

    Article  CAS  Google Scholar 

  16. X. Lu, X. Shen, Carbohydrate Polymers, 86, No. 1, 239-244 (2011). DOI: https://doi.org/10.1016/j.carbpol.2011.04.042.

    Article  CAS  Google Scholar 

  17. R. Yudianti, A. Syampurwadi, et al., Polymer Adv. Technol., 27, No. 8, 1102-1107 (2016). DOI: https://doi.org/10.1002/pat.3782.

    Article  CAS  Google Scholar 

  18. M. Gericke, K. Schlufter, et al., Biomacromolecules, No. 10, 1188-1194 (2009).

    Article  CAS  Google Scholar 

  19. T. Budtova, P. Navard, Nordic Pulp & Paper Res. J., 30, No. 1, 99-104 (2015). DOI: https://doi.org/10.3183/npprj-2015- 30-01-p099-104.

  20. US Pat. 3, 447, 939. 3.06.1969.

  21. L. K. Golova, Fibre Chemistry, 28, No. 1, 5-16 (1996). DOI: https://doi.org/10.1007/BF01130691.

    Article  Google Scholar 

  22. Q. Gao, X. Shen, X. Lu, Carbohydrate Polymers, 83, 1253-1256 (2011). DOI:https://doi.org/10.1016/j.carbpol.2010.09.029.

    Article  CAS  Google Scholar 

  23. G. Shanshan, W. Jianqing, J. Zhengwei, Carbohydrate Polymers, 87, No. 2, 1020-1025 (2012). DOI:https://doi.org/10.1016/j.carbpol.2011.06.040.

    Article  CAS  Google Scholar 

  24. Golova L. K., O. E. Borodina, et al., Fibre Chemistry, 32, No. 4, 243-251 (2000). DOI: https://doi.org/10.1023/A:1004194913945.

    CAS  Google Scholar 

  25. T. I. Gromovykh et al., RF Pat., No. 2464307 (2012).

  26. L. K. Goliova et al., RF Pat. 1645308 (1992).

  27. D. L. Kaplan, Biopolymers from Renewable Resources, Springer Science & Business Media (2013), p. 420.

  28. T. Takahashi, Fibers, 25, No. 3, 122-127 (1969). DOI: https://doi.org/10.2115/fiber.25.122.

    Article  CAS  Google Scholar 

  29. Y. Zhang, H. Shao, X. Hu, Polymer J., 34, No. 9, 666-673 (2002). DOI: https://doi.org/10.1295/polymj.34.666.

    Article  CAS  Google Scholar 

  30. I. S. Makarov, L. K. Golova, et al., Fibre Chemistry, 49, No. 4, 231-236 (2017). DOI: https://doi.org/10.1007/s10692-018-9874-6.

    Article  CAS  Google Scholar 

  31. H. Yang, R. Yan, et al., Fuel, 86, 1781-1788 (2007). DOI: https://doi.org/10.1016/j.fuel.2006.12.013.

    Article  CAS  Google Scholar 

Download references

The authors express their gratitude to L. K. Kuznetsova.

The work was carried out with support from the Russian Science Fund (grant No. 17-79-30108) using equipment from the Federal Scientific-Research Center “Crystallography and Photonics”, Russian Academy of Sciences with support from Minobrnauki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Makarov.

Additional information

Translated from Khimicheskie Volokna, No. 3, pp. 24-30, May-June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, I.S., Golova, L.K., Vinogradov, M.I. et al. Cellulose Fibers from Solutions of Bacterial Cellulose in N-Methylmorpholine N-Oxide. Fibre Chem 51, 175–181 (2019). https://doi.org/10.1007/s10692-019-10069-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-019-10069-6

Navigation