Skip to main content
Log in

High-strength, high-modulus fibres based on linear polymers: principles of production, structure, properties, use

  • Chemistry and Technology of Chemical Fibres
  • Published:
Fibre Chemistry Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. Separation into low- and medium-tonnage types of fibres/thread is arbitrary. It is generally believed that types whose annual production does not exceed 1000 tons are low-tonnage; those manufactured in the amount of tens of thousands of tons a year are medium-tonnage. Of the fibres with extremal properties, para-aramid fibres made from PPTA belong to the medium-tonnage group.

  2. Sulfuric acid is one of the best solvents for polar aromatic fibre-forming polymers from process, environmental, and economic points of view [4, 2325]. It is a large-tonnage product of basic chemistry, and the technology for fabricating, strengthening, and neutralizing it in effluents was optimized long ago. Many other examples of its use in chemical fibre technology can be cited — in particular, in production of polyoxadiazole fibres [24, 25].

References

  1. K. E. Perepelkin, Reinforcing Fibres and Polymer Fibre Composites [in Russian], Nauchnye Osnovy i Tekhnologii, St. Petersburg (2009).

    Google Scholar 

  2. F. Fourne, Synthetic Fibers, Carl Hanzer Verlag, Munich (1999).

    Google Scholar 

  3. K. E. Perepelkin, Chemical Fibres: Development of Production, Production Methods, Properties, Use [in Russian], SGUTD, St. Petersburg (2008).

    Google Scholar 

  4. G. I. Kudryavtsev, A. M. Shchetinin, et al., Reinforcing Chemical Fibres for Composite Materials [in Russian], Khimiya, Moscow (1992).

    Google Scholar 

  5. H. H. Yang, Kevlar Aramid Fiber, Interscience, Chichester, NY (1993).

    Google Scholar 

  6. Juriaan Van den Heuven, «Fibres with elevated characteristics: structure, properties, use,» in: Tekhtextil Russia International Symposium [in Russian], Moscow (2003).

  7. V. Gabara, J. D. Harzler, et al., «Aramid fibers,» in: Handbook of Fiber Chemistry,M. Lewin (ed.), 3rd ed. (2005), pp. 975-1029.

  8. A. R. Horrocks and S. C. Anand (eds.), Handbook of Technical Textiles, Woodhead Publ., Cambridge (2005).

    Google Scholar 

  9. A. Carmichael, Chem. Fibers Intern., No. 1/2, 39-40 (2007).

  10. «Global market trends for synthetic industrial yarns,» Che. Fibers Intern., No. 3, 128-129 (2009).

  11. T. Nakamura (ed.), Advances in Fiber Spinning Technology, Woodhead Publ., Cambridge (1994).

    Google Scholar 

  12. J. W. S. Hearle (ed.), High-Performance Fibres, Woodhead Publ., Cambridge (2001).

    Google Scholar 

  13. H. Van der Verft and H. M. Hofman, Chem. Fibers Intern., 46, No. 6, 435-441 (1996).

    Google Scholar 

  14. H. M. Caesar, Chem. Fibers Intern., 50, No. 2, 161-164 (2000).

    CAS  Google Scholar 

  15. L. B. Sokolov, Thermostable Aromatic Polyamides [in Russian], Khimiya, Moscow (1975).

    Google Scholar 

  16. L. B. Sokolov, Principles of Synthesis of Polymers by Polycondensation [in Russian], Khimiya, Moscow (1979), p.23; H. H. Yang, Kevlar Aramid Fiber, Interscience, Chichester — NY (1993).

    Google Scholar 

  17. P. L. Morgan, Polycondensation Processes in Synthesis of Polymers [in Russian], Khimiya, Moscow-Leningrad (1970).

    Google Scholar 

  18. S. P. Papkov and V. G. Kulichikhin, The Liquid-Crystalline State of Polymers [in Russian], Khimiya, Moscow (1977).

    Google Scholar 

  19. V. S. Matveev, G. I. Kudryavtsev, et al., Concentrated Solutions of Rigid-Chain Fibre-Forming Polymers [in Russian], Izd. NIITEKhim, Moscow (1983).

    Google Scholar 

  20. V. S. Matveev, K. E. Perepelkin, and A. V. Volokhina, Khim. Volokna, No. 3, 17-24 (1984).

  21. K. E. Perepelkin, V. S. Matveev, and A. V. Volokhina, Khim. Volokna, No. 3, 17-24 (1984).

  22. V. S. Matveev, V. I. Yankov, et al., Production and Properties of Polymer Melts and Solutions [in Russian], Khimiya, Moscow (1994).

    Google Scholar 

  23. K. E. Perepelkin, Physicochemical Principles of Spinning of Chemical Fibres [in Russian], Khimiya, Moscow (1978).

    Google Scholar 

  24. K. E. Perepelkin, R. A. Makarova, et. al., Khim. Volokna, No. 5, 8-14 (2008).

    Google Scholar 

  25. K. E. Perepelkin and R. A. Makarova, Chem. Fibers Intern., 38, No. 4, 27-31 (2006).

    Google Scholar 

  26. V. N. Kiya-Oglu, Development of Technology for Production of High-strength Fibres from Liquid-Crystalline Sulfuric Acid Solutions of Aromatic Copolyamides, Doctoral Dissertation, Mytishchi (1997).

  27. V. N. Kiya-Oglu and L. D. Serova, Poly-p-phenylene Terephthalamide Fibres [in Russian], Izd. NIITEKhim, Moscow (1985).

    Google Scholar 

  28. G. a. Belinskii, V. N. Kiya-Oglu, and V. G. Kulichikhin, Khim. Volokna, No. 1, 34-36 (1991).

  29. G. A. Belinskii, V. N. Kiya-Oglu, and V. G. Kulichikhin, Khim. Volokna, No. 1, 34-36 (1991).

  30. V. N. Kiya-Oglu, V. I. Ognev, and G. I. Kudryavtsev, Khim. Volokna, No. 2, 17-9 (1993).

  31. M. G. Northolt and D. J. Sikkema, in: Liquid Crystal Polymers, A. A. Collier (ed.), Elsevier Applied Science (1992).

  32. J. P. Penning, A. A. de Vries, et al., Phyl. Mag., A69 (2), 267-284 (1994).

    Article  Google Scholar 

  33. H. H. Yang and S. R. Allen, in: Advanced Fiber Spinning Technology, T. Nakadjima (3ed.), Woodhead Publ., Cambridge (1994).

    Google Scholar 

  34. V. S. Matveev, V. V. Gvozdev, et al., Device for Spinning Chemical Fibres from Polymer Solutions, RF Inventor’s Certificate No. 1074913 (1984).

  35. S. Rebouillat, in: High-Performance Fibres, J. W. S. Hearle (ed.), Woodhead Publ., Cambridge (2001), pp. 213-261.

    Google Scholar 

  36. A. A. Levchenko, E. M. Antipov, and N. A. Plate, Macromol. Symp., 146, 145-153 (1999).

    CAS  Google Scholar 

  37. F. K. Mulder, Choosing the Corporate Future, Ruksuniversitet, Groningen (1992).

    Google Scholar 

  38. K. E. Perepelkin (ed.), Production and Use of Fibres with Specific Properties [in Russian], VNIIV, Mytishchi (1980).

    Google Scholar 

  39. O. I. Nachinkina and G. B. Kuznetsova (eds.), Chemical Fibres, Fibre and Composite Materials for Technical Applications [in Russian], NIITEKhim, Moscow (1990).

    Google Scholar 

  40. N. N. Machalaba, Khim. Volokna, No. 3, 3-10 (1999).

  41. K. T. Perepelkin, N. N. Machalaba, and G. A. Budnitsky, Chem. Fibers Intern., No. 3, 211-214 (1999).

  42. Kh. Z. Regel’man (ed.), Machines for Spinning Chemical and Mineral Fibres [in Russian], Mashinostroenie, Leningrad (1972).

    Google Scholar 

  43. W. Hartig, Chem. Fibers Intern., 45, No. 1, 35-39 (1995).

    Google Scholar 

  44. V. M. Shchetinin, I. V. Tikhonov, and A. V. Tokarev, Khim. Volokna, No. 6, 7–9 (2006); www.aramid.ru

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimicheskie Volokna, No. 2, pp. 3-10, March-April, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perepelkin, K.E. High-strength, high-modulus fibres based on linear polymers: principles of production, structure, properties, use. Fibre Chem 42, 79–87 (2010). https://doi.org/10.1007/s10692-010-9227-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-010-9227-6

Keywords

Navigation