Skip to main content
Log in

Principles and Methods of Modification of Fibres and Fibre Materials. A Review

  • Chemistry and Technology of Chemical Fibres
  • Published:
Fibre Chemistry Aims and scope

Abstract

Thanks to the technical progress in the field of chemical fibres and textiles made from them, in addition to the traditional kinds of first-generation chemical fibres and fibre materials, new types with optimized properties based on the wide use of methods of physical, composite, and chemical modification — second-generation fibres and fibre materials (textiles) — have been created. This significantly affected the evolution of production of different kinds of fibres by partially altering the ratio of the production volumes. Modified fibres and textiles for domestic use with improved properties have become widespread — “people-friendly” materials and articles. Modified types of fibres, filament, and fabrics for industrial use are also manufactured, for example, for reinforcing mechanical rubber goods, fireproofing, antimicrobials, etc. The wide use of methods of modifying fibres and fibre (textile) materials is technically, economically, and environmentally justified. The modified fibres, by acquiring new functional properties, are not only used for manufacturing single-component fibre materials (textile cloth) but also are included in blended materials. The characteristics of the articles made of both hydrated cellulose and synthetic fibres are improved in both cases. Methods of enhancing fireproofing and giving them antimicrobial properties are widely used for viscose fibres. Making them hydrophilic and giving them antistatic and fireproof properties are especially important for synthetic (polyester, acrylic, polypropylene, etc.) fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Z. A. Rogovin, Principles of Chemistry and Chemical Engineering of Chemical Fibres [in Russian], Vols. 1 and 2, Khimiya, Moscow (1974).

    Google Scholar 

  2. Z. A. Rogovin and K. E. Perepelkin, et al. (eds.), Chemical Fibres [in Russian], Vols. 1–9, Khimiya, Moscow (1973–1984).

    Google Scholar 

  3. M. Jambrich, A. Pikler, and I. Diacik, Fyzika Vlakien, Alfa, Bratislava (1987).

    Google Scholar 

  4. H.-J. Kozlowski, Dictionary of Man-Made Fibers, Int. Business Press, Frankfurt (1998).

    Google Scholar 

  5. F. Fourne, Synthetic Fibers, Carl Hanser Verlag, Munich-Vienna (1999).

    Google Scholar 

  6. K. E. Perepelkin, Khim. Volokna, No. 5, 3–17; No. 6, 3–14 (2000).

  7. K. E. Perepelkin, Ros. Khim. Zh., 46, No.1, 31–48 (2002).

    Google Scholar 

  8. K. E. Perepelkin, Khim. Volokna, No. 3, 3–10; No. 4, 3–10 (2003).

  9. K. E. Perepelkin, Vestn. Sankt-Peterburgsk. Gos. Un-ta Tekhnol. Dizain, No. 9, 47–73 (2003).

  10. 2005 World Directory of Manufactured Fiber Producers, Fiber Economics Bureau, Arlington (2004).

  11. K. E. Perepelkin, “Chemical fibres,” in: Chemical Encyclopedia [in Russian], Vol. 1, BSE, Moscow (1988), pp. 413–416.

    Google Scholar 

  12. K. E. Perepelkin, The Past, Present, and Future of Chemical Fibres [in Russian], MGTU, Moscow (2004).

    Google Scholar 

  13. E. K. Bol’sheyanova, K. E. Perepelkin, and V. S. Smirnov, Khim. Volokna, No. 6, 48–49 (1978).

  14. A. A. Konkin and G. I. Kudryavtsev, Zh. Vses. Khim. O-va im. D. I. Mendeleeva, 11, No.5, 637–647 (1966).

    Google Scholar 

  15. Z. A. Rogovin and L. S. Gal’braikh, Chemical Transformations and Modification of Cellulose (1979).

  16. L. A. Vol’f, L. V. Emets, et al., in: Fibres with Special Properties [in Russian], L. A. Vol’f (ed.), Khimiya, Moscow (1980).

    Google Scholar 

  17. K. E. Perepelkin, Legprombiznes-Direktor, No. 3, 38; No. 4, 27–29 (2002).

  18. A. V. Volokhina, Khim. Volokna, No. 4, 6–9 (1983).

  19. G. E. Krichevskii, Chemical Engineering of Textile Materials [in Russian], Vol. 1, VZITLP, Moscow (2000); Vol. 2 (2001); Vol. 3 (2001).

    Google Scholar 

  20. H. K. Rouette, Encyclopedia of Textile Finishing, Vol. 1, Springer-Verlag (2001), p. 926; Vol. 2, pp. 927–1084; Vol. 3, pp. 1805–2766.

    Google Scholar 

  21. J. W. S. Hearle (ed.), High-Performance Fibers, Woodhead Publ., Cambridge (2001).

    Google Scholar 

  22. A. V. Volokhina, Khim. Volokna, No. 3, 11–19 (2003).

  23. K. E. Perepelkin, Chem. Fibers Intern., 54, No.2, 101–107 (2004).

    Google Scholar 

  24. K. E. Perepelkin, Physicochemical Principles of Spinning of Chemical Fibres [in Russian], Khimiya, Moscow (1978).

    Google Scholar 

  25. A. Ziabicki, Fundamentals of Fibre Formation, Wiley Interscience, London (1976).

    Google Scholar 

  26. K. E. Perepelkin, in: Principal Physical-Chemical and Technological Regularities of Fiber Formation. Fiber-Grade Polymers, Chemical Fibers and Special Textiles, H. Struszczyk, A. Marcinchin, and A. Wlochowicz (eds.), WCh Publ., Lodz (2001), pp. 167–192.

    Google Scholar 

  27. K. E. Perepelkin, V. S. Matveev, and A. V. Volokhina, Khim. Volokna, No. 3, 17–24; No. 4, 14–19 (1984).

  28. T. Nakajima (ed.), Advances in Fiber Spinning Technology, Woodhead Publ., Cambridge (1994).

    Google Scholar 

  29. K. E. Perepelkin, “Spinning chemical fibres,” in: Chemical Encyclopedia [in Russian], Vol. 5, BRE, Moscow (1997), pp. 117–123.

    Google Scholar 

  30. A. Ziabicki and H. Kawai (eds.), High-Speed Fiber Spinning (Science and Engineering Aspects), Wiley, New York (1985).

    Google Scholar 

  31. B. E. Geller, Khim. Volokna, No. 3, 13–17 (1996).

  32. V. E. Geller, High-speed Spinning of Polyester Fibres [in Russian], Tversk. Obl. Kn.-Zh. Izd., Tver’.

  33. M. N. Belitsin, Physical Modification of Chemical Fibres [in Russian], Legprombytizdat, Moscow (1985).

    Google Scholar 

  34. A. T. Serkov, V. V. Skorobogatykh, et al., Cotton Viscose Fibres [in Russian], Khimiya, Moscow (1987).

    Google Scholar 

  35. S. Gazit, Legprombiznes — Direktor, No. 5, 34–35 (2002).

  36. L. S. Smirnov and V. N. Shavlyuk, Textured Fibres [in Russian], Legkaya Industriya, Moscow (1979).

    Google Scholar 

  37. M. P. Nosov and A. A. Volkhonskii, Manufacture of Textured Fibres [in Russian], Khimiya, Moscow (1982).

    Google Scholar 

  38. A. V. Matukonis, Structure and Mechanical Properties of Heterogeneous Fibres [in Russian], Legkaya Industriya, Moscow (1971).

    Google Scholar 

  39. V. A. Gol’dade, A. V. Makarevich, et al., in: Melt-blown Polymer Fibre Materials [in Russian], L. S. Pinchuk (ed.), IMMS NANB, Gomel’ (2000).

    Google Scholar 

  40. L. S. Pinchuk, V. A. Goldade, et al., Melt Blowing. Equipment, Technology and Polymer Fibrous Materials, Springer-Verlag, Berlin (2002).

    Google Scholar 

  41. Kh. Kern and A. A. Konkin, Khim. Volokna, No. 3, 1–7 (1967).

  42. W. E. Fitzgerald and G. P. Knudsen, Text. Res. J., 37, No.1, 447–453 (1967).

    Google Scholar 

  43. K. E. Perepelkin and V. V. Podosenov, Khim. Volokna, No. 3, 28–30 (1972).

  44. V. K. Guse, Z. D. Tul’guk, and T. V. Spitsyna, Bicomponent Fibres and Yarns [in Russian], Khimiya, Moscow (1986).

    Google Scholar 

  45. Chem. Fibers Int., 46, No.4, 296–297 (1996).

  46. T. Hongu and G. O. Philips, New Fibers, Woodhead Publishing, Cambridge (1997).

    Google Scholar 

  47. T. Hongu and G. O. Philips, New Millennium Fibres, Woodhead Publishing, Cambridge (2003).

    Google Scholar 

  48. M. V. Tsebrenko, Ultrafine Synthetic Fibres [in Russian], Khimiya, Moscow (1981).

    Google Scholar 

  49. A. Marcincin, Vlakna Textil, 8, No.2, 128–134 (2001).

    Google Scholar 

  50. I. V. Petryanov, V. I. Kozlov, et al., FP Fibrous Filter Materials [in Russian], Znanie, Moscow (1968).

    Google Scholar 

  51. K. G?tze, Chemiefasern nach dem Viskozeverfahren, Springer-Verlag, Berlin (1967).

    Google Scholar 

  52. B. E. Geller and V. G. Chirtulov, in: Preprints of 5th International Symposium on Chemical Fibres [in Russian], Vol. 2, VNIISV Kalinin (1990), pp. 157–165.

    Google Scholar 

  53. Einfarben von Kunststoffen, VDI-Verlag GmbH, Dusseldorf (1975).

  54. A. Marcinchin et al., Vlakna Textil, 8, No.4, 267–272 (2001).

    Google Scholar 

  55. M. Hricova and A. Marcinchin, Vlakna Textil, 10, No.4, 180–188 (2003).

    Google Scholar 

  56. M. Hricova and A. Marcinchin, Vlakna Textil, 11, No.4, 99–105 (2003).

    Google Scholar 

  57. R. M. Levit, Conducting Chemical Fibres [in Russian], Khimiya, Moscow (1986).

    Google Scholar 

  58. E. A. Pakshver, “Polyacrylonitrile fibres,” in: Carbochain Synthetic Fibres [in Russian], K. E. Perepelkin (ed.), Khimiya, Moscow (1973), pp. 7–164.

    Google Scholar 

  59. L. I. Valuev, “Modification of polymers,” in: Chemical Encyclopedia, Vol. 3, BRE, Moscow (1992), pp. 104–106.

    Google Scholar 

  60. L. A. Vol’f and A. I. Meos, Special-Application Fibres [in Russian], Khimiya, Moscow (1971).

    Google Scholar 

  61. I. Ya. Kolontarov and V. L. Liverant, Giving Textile Materials Biocidal Properties and Resistance to Microorganisms (1981).

  62. E. M. Aizenshtein, L. V. Ignatovskaya, et al., Khim. Volokna, No. 3, 42–44 (2000).

  63. B. N. Mel’nikov and T. D. Zakharova, Modern Methods of Final Finishing of Fabrics Made of Cellulose Fibres [in Russian], Legkaya Industriya, Moscow (1975).

    Google Scholar 

  64. C. M. Carr (ed.), Chemistry of the Textile Industry, Blackie Academic & Professional, London (1992).

    Google Scholar 

  65. L. S. Sletkina and Yu. Ya. Anufrieva, Zh. Vses. Khim. O-va im. D. I. Mendeleeva, 21, No.1, 82–89 (1976).

    Google Scholar 

  66. L. S. Sletkina, S. E. Kozlova, and Yu. Ya. Sevost’yanova, Zh. Vses. Khim. O-va im. D. I. Mendeleeva, 26, No.4, 415–420 (1981).

    Google Scholar 

  67. Yu. I. Osik, V. F. Androsov, and A. I. Glushchenko, Finishing of Articles Made of Chemical Fibres [in Russian], Tekhnika, Kiev (1982).

    Google Scholar 

  68. N. F. Orlov, N. V. Androsova, and N. V. Vvedenskii, Organosilicon Compounds in the Textile and Light Industry [in Russian], Legkaya Industriya, Moscow (1966).

    Google Scholar 

  69. Z. Yu. Kozinda, I. I. Gorbacheva, et al., Methods of Manufacturing Textile Materials with Special Properties [in Russian], Legprombytizdat, Moscow (1988).

    Google Scholar 

  70. S. H. Zeronian and M. J. Collins, Textile Progress. Surface Modification of Polyester by Alkaline Treatments, 20, No.2 (1989).

  71. R. Grottenmyuller, Tekst. Khim., No. 1(16), 57–63 (1999).

    Google Scholar 

  72. A. P. Borshchev and Kh. Vinters, Tekst. Khim., No. 1(20), 53–55 (2002).

    Google Scholar 

  73. A. R. Horrocks, M. Tunc, and D. Price, Textile Progress. The Burning Behaviour of Textiles and Its Assessment by Oxygen-Index Methods, 18, No.1/2/3 (1989).

  74. K. E. Perepelkin, Legprombiznes — Direktor, No. 6, 30–31; No. 8, 36–37 (2001).

  75. M. A. Tyuganova, M. Yu. Mazov, and M. A. Kop’ev, Zh. Vses. Khim. O-va im. D. I. Mendeleeva, 21, No.1, 90–97 (1976).

    Google Scholar 

  76. T. V. Druzhinina and B. A. Mukhin, “Noncombustible fibres,” in: Thermostable, Heat-Resistant, and Incombustible Fibres [in Russian], Khimiya, Moscow (1978), pp. 342–416; M. A. Tyuganova, M. A. Kop’ev, et al., Zh. Vses. Khim. O-va im. D. I. Mendeleeva, 26, No. 4, 421–426 (1981).

    Google Scholar 

  77. K. E. Perepelkin, V. A. Mukhin, and V. S. Smirnov, Faserf. Textilt., 25, No.2, 72–86 (1974).

    Google Scholar 

  78. K. E. Perepelkin and V. A. Mukhin, Lenzing Ber., 40, 46–66 (1976).

    Google Scholar 

  79. H. Zimmermann, “Trevira CS — safety without compromise — flame-retardant home textiles,” in: Fiber-Grade Polymers, Chemical Fibers and Special Textiles, H. Struszczyk (ed.), IWCh Publ., Lodz (2001), pp. 299–308.

    Google Scholar 

  80. S. Rahbaran, Chem. Fibers Intern., 49, No.6, 491–493 (1999).

    Google Scholar 

  81. T. Kawata, Chem. Fibers Intern., 48, No.1, 38–43 (1998).

    Google Scholar 

  82. Kosmetika Meditsina, No. 1, 5–17 (2000).

  83. B. S. Sprague and H. D. Noether, Text. Res. J., 31, No.10, 858–865 (1961).

    Google Scholar 

  84. K. E. Perepelkin, Khim. Volokna, No. 6, 3–8 (2003).

  85. K. E. Perepelkin, Khim. Volokna, No. 4, 32–40 (2002).

  86. M. P. Zverev, Chemisorption Fibres [in Russian], Khimiya, Moscow (1981).

    Google Scholar 

  87. M. P. Zverev and Z. Z. Abdulkhakova, Fibrous Chemisorbents [in Russian], Narodnyi Uchitel’, Moscow (2001).

    Google Scholar 

  88. V. N. Pershikov, N. M. Grad, K. E. Perepelkin, et al., Physical Modification of the Surface of Chemical Fibres [in Russian], NIITEKhim, Moscow (1984).

    Google Scholar 

  89. A. M. Kutepov, A. G. Zakharov, et al., Ros. Khim. Zh., 46, No.1, 103–115 (2002).

    Google Scholar 

  90. V. N. Kestel’man, Physical Methods of Modification of Polymeric Materials [in Russian], Khimiya, Moscow (1982).

    Google Scholar 

  91. N. N. Rykalin, A. A. Uglov, et al., Laser and Electron-Beam Treatment of Materials [in Russian], Mashinostroenie, Moscow (1985).

    Google Scholar 

  92. A. I. Maksimov and V. I. Grinevich, in: Use of Low-Temperature Plasma in Chemistry [in Russian], L. S. Polak (ed.), Nauka, Moscow (1981), pp. 135–169.

    Google Scholar 

  93. A. I. Maksimov, Physical Chemistry of Plasma Manufacturing Processes [in Russian], Ivanovo (1985).

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is an analytical review of the principles and methods of manufacturing modified fibres which have had the most important role in the development of chemical fibres and fibre materials in conditions of market economics.

__________

Translated from Khimicheskie Volokna, No. 2, pp. 37–51, March–April, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perepelkin, K.E. Principles and Methods of Modification of Fibres and Fibre Materials. A Review. Fibre Chem 37, 123–140 (2005). https://doi.org/10.1007/s10692-005-0069-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-005-0069-6

Keywords

Navigation