Skip to main content

Polysaccharide Fibres in Textiles

  • Chapter
  • First Online:
The European Polysaccharide Network of Excellence (EPNOE)

Abstract

Besides naturally grown cellulose fibres like cotton, hemp or flax, interest in textile fibres made up from regenerated cellulose is growing. By sure the use of a polymer material, which is provided by nature in huge amounts, favours its use as more sustainable material compared to oil-based products. However, a much stronger argument is the high variability of the properties that can be achieved, which allows design an extremely wide range of products.

In this chapter the main characteristics of textile fibres from regenerated cellulose are highlighted. Dependent on the production process, pore characteristics, accessibility and surface can be shaped. The chemical reactivity of the cellulose polymer and the swelling behaviour of the fibrous structure permit many chemical conversion processes towards specialised products.

Representative examples for fibre modifications are highlighted in this chapter, among them are fibre reorganisation during swelling processes, accessibility-controlled reactivity, plasma treatment for surface modification, antimicrobial functionalisation, deposition of magnetic nanoparticles and incorporation of pigments. The given examples demonstrate the diversity of processing strategies which all lead to unique products with specific functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott GM, Robinson GA (1977a) The corona treatment of cotton, part I: silver cohesion. Text Res J 47:141–144

    Google Scholar 

  • Abbott GM, Robinson GA (1977b) The corona treatment of cotton, part II: yarn and fabric properties. Text Res J 47:199–202

    Google Scholar 

  • Abu-Rous M, Varga K, Bechtold T, Schuster KC (2007) A new method to visualise and characterise the pore structure of TENCEL® (Lyocell) and other mans-made cellulosic fibres using a fluorescent dye molecular probe. J Appl Polym Sci 106(3):2083–2091

    Article  CAS  Google Scholar 

  • Akishev Y, Kroepke S, Behnisch J, Hollander A, Napartovich A, Trushkin N (2000) Non-thermal plasma treatment of polymer films and fabrics based on a glow discharge at atmospheric pressure In: Wagner H, Behnke JF, Babucke G (eds) Proceedings of the international symposium on high pressure low temperature plasma chemistry, vol. 2. Greifswald, Germany, pp 481–485

    Google Scholar 

  • Akishev YS, Grushin ME, Monich AE, Napartovich AP, Trushkin NI (2003) One-atmosphere argon dielectric-barrier corona discharge as an effective source of cold plasma for the treatment of polymer films and fabrics. High Energ Chem 37(5):286–291

    Article  CAS  Google Scholar 

  • Allwood JM, Laursen SE, Malvido de Rodriguez C, Boecken NMP (2006) Well dressed? The present and future sustainability of clothing and textiles in the United Kindgdom. University Cambridge Institute for Manufacturing, Cambridge. ISBN 1-902546-52-0

    Google Scholar 

  • Anon (2000) A Glossary of AATCC Standard Terminology, AATCC Technical Manual 75, American Association of Textile Chemists and Colorists, Research Triangle Park, NC, USA, p 399

    Google Scholar 

  • Anon (2008) ESFRI - European Road Map for Research Infrastructures; Roadmap 2008, ISBN 978-92-79-10117-5

    Google Scholar 

  • Anon (2010a) PES-Weltproduktion +9 %. Melliand Textilberichte 91/1–2, pp 4–5

    Google Scholar 

  • Anon (2010b) Globale Faserproduktion. Melliand Textilberichte 91/4-5, pp 149

    Google Scholar 

  • Bartsch P, Ruef H (1999) Method for producing cellulosic moulded bodies. WO 99/46434, 16 Sep 1999

    Google Scholar 

  • Batt IP (1961) Process for producing colored pellicular gel structures of regenerated cellulose. US 3005723, 24 Oct 1961

    Google Scholar 

  • Baumann H, Keller B, Ruzicka E (1991) Partially cationized cellulose for non- thrombogenic membrane in the presence of heparin and endothelial-cell-surface-heparansulfate (ES-HS). J Membr Sci 61:253–268

    Article  CAS  Google Scholar 

  • Bechtold T, Manian AP (2005) Method of producing a dyed formed cellulosic article. WO 2007/070904, 19 Dec 2005

    Google Scholar 

  • Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34

    Article  CAS  PubMed  Google Scholar 

  • Berscht PC, Nies B, Liebendorfer A, Kreuter J (1994) Incorporation of basic fibroblast growth factor into methylpyrrolidinone chitosan fleeces and determination of the in vitro release characteristics. Biomaterials 15:593–600

    Article  CAS  PubMed  Google Scholar 

  • Bongiovanni R, Di Gianni A, Priola A, Pollicino A (2007) Surface modification of polyethylene for improving the adhesion of a highly fluorinated UV-cured coating. Eur Polym J 43:3787–3794

    Article  CAS  Google Scholar 

  • Bredereck K, Commarmot A (1998) Ammonia treatment of cellulosic fibers. Melliand Textilberichte 79(1–2):E19–E22

    Google Scholar 

  • Bredereck K, Stefani HW, Beringer J, Schulz F (2003) Alkali- und Flüssigammoniakbehandlung von Lyocellfasern. Melliand Textilberichte 58(1–2):58–64

    Google Scholar 

  • Briganti S, Picardo M (2003) Antioxidant activity, lipid peroxidation and skin diseases. What‘s new. J Eur Acad Dermatol Venereol 17(6):663–669

    Article  CAS  PubMed  Google Scholar 

  • Brüser V, Heintze M, Brandl W, Marginean G, Bubert H (2004) Surface modification of carbon nanofibres in low temperature plasmas. Diamond Relat Mater 13:1177–1181

    Article  CAS  Google Scholar 

  • Bui HM, Lenninger M, Manian AP, Abu-Rous M, Schimper CB, Schuster KC, Bechtold T (2008) Treatment in swelling solutions modifying cellulose fibre reactivity – Part 2: Accessibility and reactivity. In: Macromolecular symposia: zellcheming 2007 conference proceedings, vol 262, pp 50–64

    Google Scholar 

  • Bullett NA, Bullett DP, Truica-Marasescu FE, Lerouge S, Mwale F, Wertheimer MR (2004) Polymer surface micropatterning by plasma and VUV-photochemical modification for controlled cell culture. Appl Surf Sci 235:395–405

    Article  CAS  Google Scholar 

  • Byrne GA, Brown KC (1972) Modifications of textiles by glow-discharge reactions. J Soc Dyers Colour 88:113–117

    Article  CAS  Google Scholar 

  • Čakara D, Fras Zemljič L, Bračič M, Stana-Kleinschek K (2009) Protonation behavior of cotton fabric with irreversibly adsorbed chitosan: a potentiometric titration study. Carbohydr Polym 78:36–40

    Article  CAS  Google Scholar 

  • Carrazana-Garcia JA, López-Quintela MA, Rivas-Rey J (1997) Characterization of ferrite particles synthesized in presence of cellulose fibres. Colloids Surf A Physicochem Eng Asp 121:61–66

    Article  CAS  Google Scholar 

  • Cassella Farbwerke Mainkur A.G. (1961) Dyeing of regenerated cellulose in the spinning paste. BE 611323, 29 Dec 1961, vide Chemical Abstract No. 57:17664

    Google Scholar 

  • Castelvetro V, Fatarella E, Corsi L, Giaiacopi S, Ciardelli G (2006) Graft polymerisation of functional acrylic monomers onto cotton fibres activated by continuous Ar plasma. Plasma Process Polym 3(1):48–57

    Article  CAS  Google Scholar 

  • Chedin J, Marsaudon A (1955) Action of caustic soda solutions on cellulose fibers. Equilibrium fixation of caustic soda. Mercerization. Die Makromolekulare Chemie 15:115–160

    Article  CAS  Google Scholar 

  • Chedin J, Marsaudon A (1956) The mechanism of the fixation of sodium hydroxide on the cellulose fiber-mercerization-structure of aqueous sodium hydroxide solutions II. Die Makromolekulare Chemie 20:57–82

    Article  CAS  Google Scholar 

  • Chedin J, Marsaudon A (1959) The adsorption and desorption mechanism of aqueous sodium hydroxide solutions in cellulose fibers III. Equilibriums of NaOH fixation. Die Makromolekulare Chemie 33:195–221

    Article  CAS  Google Scholar 

  • Chen JR (1991) Free radicals of fibers treated with low temperature plasma. J Appl Polym Sci 42(7):2035–2037

    Article  CAS  Google Scholar 

  • Ciba Ltd. (1965) Dyeing of regenerated cellulosic fibers and films. FR 1417575, 12 Nov 1965, vide Chemical Abstract No. 65:57365

    Google Scholar 

  • Ciba Ltd. (1966) Transparent colored regenerated cellulose. NL 6514672, 13 May 1966, vide Chemical Abstract No. 65:82924.

    Google Scholar 

  • Ciba Ltd. (1968) Process for the preparation of transparent colored shaped articles of regenerated cellulose with the aid of organic dyestuffs of low solubility in water. GB 1128158, 25 Sep 1968

    Google Scholar 

  • Coats JP, Gailey RM (1968) Method of treating cellulosic materials. British Patent 1136417, 1968

    Google Scholar 

  • Colom X, Carrillo F (2002) Crystallinity, crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polym J 38(11):2225–2230

    Article  CAS  Google Scholar 

  • Corbman BP (1985) Textiles: fiber to fabric, 6th edn. McGraw-Hill, New York, NY. ISBN 0-07-Y66236-3

    Google Scholar 

  • Crawshaw J, Cameron RE (2000) A small angle X-ray scattering study of pore structure in Tencel cellulose fibres and the effects of physical treatments. Polymer 41:4691–4698

    Article  CAS  Google Scholar 

  • Culler MD, Bitman J, Thompson MJ, Robbins WE, Dutky SR, Mastitis I (1979) In vitro antimicrobial activity of alkyl amines against mastitic bacteria. J Dairy Sci 62:584–595

    Article  CAS  PubMed  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki Sand Brown RM (2006) The natural power to heal wounds. J Biomater 27(2):145–151

    Article  CAS  Google Scholar 

  • De Geyter N, Morent R, Leys C (2006) Surface modification of a polyester non-woven with a dielectric barrier discharge in air at medium pressure. Surf Coat Tech 201:2460–2466

    Article  CAS  Google Scholar 

  • Denoyelle G (1959) Action of soda solutions on native cellulose, formation of hydrated sodium cellulosate; swelling. Svensk Papperstid 62:390–406

    CAS  Google Scholar 

  • Dimick BE (1976) The importance of the structure of alkali metal hydroxide solutions in decrystallizing cellulose I, PhD thesis, Lawrance University, The Institute of Paper Chemistry, Appleton, WI

    Google Scholar 

  • Diniz JMBF, Gil MH, Castro JAAM (2004) Hornification-its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494

    Article  CAS  Google Scholar 

  • Donnan FG, Harris AB (1911) Osmotic pressure and conductivity of aqueous solutions of congo red and reversible membrane equilibria. J Chem Soc Trans 99:1554–1577

    Article  CAS  Google Scholar 

  • Dosne H (1936) Colored cellulose material. US 2041907, 26 May 1936

    Google Scholar 

  • Douglas BE, McDaniel DH (1965) Concepts and models of inorganic chemistry. Blaisdell, Waltham, MA, p 199

    Google Scholar 

  • Ebeling H, Fink HP (2009) Method of producing cellulose carbamate blown film and use of the same, US Patent Application No. 2009/0259,032, 7 Apr 2009

    Google Scholar 

  • Ehrhardt A, Groner S, Bechtold T (2007) Swelling behaviour of cellulosic fibers – Part I, fibers and textiles in Eastern Europe fibres. Text Eastern Eur 15(5–6):46–48

    CAS  Google Scholar 

  • Eskridge BE (1962) Manufacture of pigmented viscose rayon. US 3033697, 8 May 1962

    Google Scholar 

  • Fras Zemljič L, Peršin Z, Stenius P (2009a) Improvement of chitosan adsorption onto cellulosic fabrics by plasma treatment. Biomacromolecules 10(5):1181–1187

    Article  PubMed  CAS  Google Scholar 

  • Fras Zemljič L, Strnad S, Šauperl O, Stana-Kleischek K (2009b) Characterization of amino groups for cotton fibers coated with chitosan. Text Res J 79(3):219–226

    Article  CAS  Google Scholar 

  • Fras Zemljič L, Čakara D, Kokol V (2011a) Antimicrobial and antioxidant properties of chitosan-based viscose fibres enzymatically functionalized with flavonoids. Text Res J 81(15):1532–1540

    Article  CAS  Google Scholar 

  • Fras Zemljič L, Čakara D, Michaelis N, Heinze T, Stana-Kleinschek K (2011b) Protonation behavior of 6-deoxy-6-(2-aminoethyl)amino cellulose: a potentiometric titration study. Cellulose 18:33–43

    Article  CAS  Google Scholar 

  • Gimblett FGR, Monk CB (1954) E.m.f studies of electrolytic dissociation. VII. Some alkali and alkaline earth metal hydroxides in water. Trans Faraday Soc 50:965–972

    Article  CAS  Google Scholar 

  • Gomm AS, Morgan LB and Wood L (1964) Process of incorporating aqueous pigment composition in viscose. US 3156574, 10 Nov 1964

    Google Scholar 

  • Goodwin A, Herbert T, Leadley S, Swallow F (2002) In: Proceedings of 8th international symposium on high pressure low temperature plasma chemistry, vol 2. Pühajärve Estonia, pp P7.9–1

    Google Scholar 

  • Gorjanc M, Bukošek V, Gorenšek M, Mozetič M (2010) CF4 plasma and silver functionalized cotton. Text Res J 80(20):2204–2213

    Article  CAS  Google Scholar 

  • Greentex international. http://www.greentex-international.com. Accessed 4.5.2012

  • Hama H, Sakurai H (1972) Dope dyeing viscose rayon having a good black luster. JP 47051968, 27 Dec 1972, vide Chemical Abstract No. 80:28345

    Google Scholar 

  • Hattori K, Yoshida T, Nakashima H, Premanathan M, Aragaki R, Mimura T, Kaneko Y, Yamamo N, Uryu T (1998) Synthesis of sulfonated amino polysaccharides having anti-HIV and blood anticoagulant activities. Carbohydr Res 312:1–8

    Article  CAS  PubMed  Google Scholar 

  • Heinrich E (1966) Spin-dyed regenerated cellulose products and process for their manufacture. GB 1046299, 19 Oct 1966

    Google Scholar 

  • Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. functionalisation of cellulose, vol 2. Wiley, Weinheim. ISBN 10: 3527294899

    Google Scholar 

  • Ho KKC, Lee AF, Bismarck A (2007) Fluorination of carbon fibres in atmospheric plasma. Carbon 45:775–784

    Article  CAS  Google Scholar 

  • Hoenich N (2006) Cellulose for medical applications: past, present, and future. Bioresources 1(2):270–280

    Google Scholar 

  • Holländera A, Thome J, Keusgen M, I D, Klein W (2004) Polymer surface chemistry for biologically active materials. Appl Surf Sci 235:145–150

    Article  CAS  Google Scholar 

  • Holme I (2004) Coloration of technical textiles. In: Horrocks AR, Anand SC (eds) Handbook of technical textiles. Woodhead Publishing Ltd, Cambridge

    Google Scholar 

  • Horrocks AR, Anand SC (2004) Handbook of technical textiles. The Textile Institute, Woodhead Publishing Ltd, Cambridge. ISBN 1 85573 385 4

    Google Scholar 

  • Hribernik S, Sfiligoj-Smole M, Stana-Kleinschek K (2009) Formation of magnetic layers on regenerated cellulose fibres’ surface, EPNOE Polysaccharides as a source of advanced materials: Turku/Åbo 2009, Book of abstracts

    Google Scholar 

  • Hribernik S (2010) Study of pre-treatment and coating of regenerated cellulose fibres with nano particles, Doctoral thesis, University of Maribor, Slovenia

    Google Scholar 

  • Hwang YJ, Mccord MG, An JS, Kang BC, Park SW, Kang BC (2005) The effects of helium atmospheric pressure plasma treatment on low-stress mechanical properties of polypropylene nonwoven fabrics. Text Res J 75:771–778

    Article  CAS  Google Scholar 

  • I.G. Farbenindustrie A.G. (1936) Process for the manufacture of dyed filaments and films. GB 448447, 8 Jun 1936

    Google Scholar 

  • I.G. Farbenindustrie A.-G. (1937) The manufacture of dyed artificial masses from regenerated cellulose. GB 465606, 10 May 1937

    Google Scholar 

  • Ibbett RN, Hsieh YL (2001) Effect of fiber swelling on the structure of lyocell fabrics. Text Res J 71(2):164–173

    Article  CAS  Google Scholar 

  • Jaturapiree A, Manian AP, Bechtold T (2006) Sorption studies on regenerated cellulosic fibres in salt-alkali mixtures. Cellulose 13(6):647–654

    Article  CAS  Google Scholar 

  • Jaturapiree A, Ehrhardt A, Groner S, Öztürk HB, Siroka B, Bechtold T (2008) Treatment in swelling solutions modifying cellulose fibre reactivity—Part 1: accessibility and sorption. In: Macromolecular symposia: Zellcheming 2007 conference proceedings, vol 262, pp 39–49

    Google Scholar 

  • Jaturapiree A, Manian AP, Lenninger M, Bechtold T (2011) The influence of alkali pretreatments in lyocell resin finishing—Changes in fiber accessibility to crosslinker and catalyst. Carbohydr Polym 86:612–620

    Article  CAS  Google Scholar 

  • Jeffries R, Warwicker JO (1969) Function of swelling in the finishing of cotton. Text Res J 39(6):548–559

    CAS  Google Scholar 

  • Jones FB (1959) Glossy, spun-dyed threads from aqueous cellulose solutions. DE 1067173, 15 Oct 1959

    Google Scholar 

  • Kampl R, Six W (1996) Non-woven flame retardant textile fabric. WO 96/14461, 17 Mai 1996

    Google Scholar 

  • Kaputskii FN, Gert EV, Torgashov VI, Zubets OV (2005) Hydrogels for medical applications fabricated by oxidative-hydrolytic modification of cellulose. Fibre Chem 37:485–489

    Article  CAS  Google Scholar 

  • Kasahara K, Sasaki H, Donkai N, Takagishi T (2004) Effect of processing and reactive dyeing on the swelling and pore structure of lyocell fibers. Text Res J 74(6):509–515

    Article  CAS  Google Scholar 

  • Keil A, Popp P, Krause E (1961) Process for the production of pigmented regenerated cellulosic fibers. GB 872207, 5 Jul 1961

    Google Scholar 

  • Klemm D, Philipp B, Heinze T (1998) Comprehensive cellulose chemistry. Wiley, Winheim, pp 9–32

    Book  Google Scholar 

  • Kline HB, Helm EB (1939) Manufacture of artificial silk. US 2143883, 17 Jan 1939

    Google Scholar 

  • Kongdee A, Bechtold T, Burtscher E, Scheinecker M (2004) The influence of wet/dry treatment on pore structure - the correlation of pore parameters, water retention and moisture regain values. Carbohydr Polym 57:39–44

    Article  CAS  Google Scholar 

  • Kotel’nikova NE, Wegener G, Paakkari T, Serimaa R, Demidov VN, Serebriakov AS, Shchukarevand AV, Gribanov AV (2003) Silver intercalation into cellulose matrix. An X-ray scattering, solid-state 13C NMR, IR, X-ray photoelectron, and Raman study. Russ J Gen Chem 73(3):418–426

    Article  Google Scholar 

  • Krentsel E, Fusselman S, Yasuda H, Yasuda T, Miyama M (1994) Penetration of plasma surface modification. II. CF4 and C2F4 low-temperature cascade arc torch. J Polym Sci A Polym Chem 32:1839–1845

    Article  CAS  Google Scholar 

  • Krentsel E, Yasuda H, Miyama M, Yasuda T (1995) Penetration of plasma surface modification. III. Multiple samples exposed to CF4 and C2F4 low temperature cascade arc torch. J Polym Sci A Polym Chem 33:2887–2892

    Article  CAS  Google Scholar 

  • Lacasse K, Baumann W (2004) Textile chemicals. Environmental data and facts. Springer, Berlin. ISBN 978-3-540-40815-4

    Book  Google Scholar 

  • Lim SH, Hudson SM (2004) Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr Res 339(2):313–319

    Article  CAS  PubMed  Google Scholar 

  • Link E, Mason CR, Tosti A, Karnik A (2005) Flame blocking liner materials. US 2005/0118919, 2 June 2005

    Google Scholar 

  • Lockhart GR (1932) Manufacture of rayon. US 1865701, 5 July 1932

    Google Scholar 

  • Lund MN, Hviid MS, Skibsted LH (2007) The combined effect of antioxidants and modified atmosphere packaging on protein and lipid oxidation in beef patties during chill storage. Meat Sci 76(2):226–233

    Article  CAS  PubMed  Google Scholar 

  • Lutgerhorst AG (1956) Spundyed rayon. US 2738252, 13 Mar 1956

    Google Scholar 

  • Malek RMA, Holme I (2003) The effect of plasma treatment on some properties of cotton. Iran Polym J 12(4):271–280

    CAS  Google Scholar 

  • Maloney MA (1967) Mass coloring of regenerated cellulose with vat dyes. DE 1253864, 9 Nov 1967

    Google Scholar 

  • Mancosky DG, Lucia LA (2005) A novel and efficient approach for imparting magnetic susceptibility to lignocellulosic fibers. Carbohydr Polym 59:517–520

    Article  CAS  Google Scholar 

  • Manian AP, Abu-Rous M, Schuster KC, Bechtold T (2006) The influence of alkali pre-treatments in lyocell resin finishing. J Appl Polym Sci 100(5):3596–3601

    Article  CAS  Google Scholar 

  • Manian AP, Abu-Rous M, Lenninger M, Roeder T, Schuster KC, Bechtold T (2008) The influence of alkali pretreatments in lyocell resin finishing – Substrate structure. Carbohydr Polym 71(4):664–671

    Article  CAS  Google Scholar 

  • Manufactures de produits chimiques du Nord (establissment Kuhlmann) (1956) Coloring viscose fibers. FR 1114803, 17 Apr 1956, vide Chemical Abstract No. 53:102818

    Google Scholar 

  • Marchessault RH, Rioux P, Ricard S (1992) Preparation and synthesis of magnetic fibers. US Patent 5,143,583, 1 Sept 1992

    Google Scholar 

  • Mercer J (1850) Improvements in the preparation of cotton and other fabrics and other fibrous materials. British Patent 13,296, 1850

    Google Scholar 

  • Molina R, Espinós JP, Yubero F, Erra P, González-Elipe AR (2005) XPS analysis of down stream plasma treated wool: influence of the nature of the gas on the surface modification of wool. Appl Surf Sci 252:1417–1429

    Article  CAS  Google Scholar 

  • Morales J, Olayo MG, Cruz GJ, Herrera-Franco P, Olayo R (2006) Plasma modification of cellulose fibers for composite materials. J Appl Polym Sci 101(6):3821–3828

    Article  CAS  Google Scholar 

  • Morent R, De Geyter N, Leys C, Gengembre L, Payen E (2007) Surface modification of non-woven textiles using a dielectric barrier discharge operating in air, helium and argon at medium pressure. Text Res J 77(7):471–488

    Article  CAS  Google Scholar 

  • Moseley R, Hilton JR, Waddington RJ, Harding KG, Stephens P, Thomas DW (2004) Comparison of oxidative stress biomarker profiles between acute and chronic wound environments. Wound Repair Regen 12:419–429

    Article  PubMed  Google Scholar 

  • Mozetič M (2007) Characterization of reactive plasmas with catalytic probes. Surf CoatTechnol 9–11(201):4837–4842

    Article  CAS  Google Scholar 

  • Mukhopadhyay SM, Joshia P, Datta S, Macdaniel J (2002a) Plasma assisted surface coating of porous solids. Appl Surf Sci 201(1–4):219–226

    Article  CAS  Google Scholar 

  • Mukhopadhyay SM, Joshi P, Datta S, Zhao JG, France P (2002b) Plasma assisted hydrophobic coatings in porous materials. J Phys D: Appl Phys 35:1927–1933

    Article  CAS  Google Scholar 

  • Muzzarelli RAA, Mattioli-Belmonte M, Tietz C, Biagini R, Ferioli G, Brunelli MA, Fini M, Giardino R, Ilari P, Biagini G (1994) Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials 15:1075–1081

    Article  CAS  PubMed  Google Scholar 

  • Muzzarelli RAA (2009) Chitins and chitosan for the repair of wound skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182

    Article  CAS  Google Scholar 

  • Myllyte P, Salmi J, Laine J (2009) The influence of pH on the adsorption and interaction of chitosan with cellulose. Bioresources 4(4):1647–1662

    Google Scholar 

  • Novacel SA (1953) Colored regenerated cellulose sponges. FR 1025296, 13 Apr 1953, vide Chemical Abstract No. 52:3968

    Google Scholar 

  • Oeztuerk HB, MacNaughtan B, Mitchell J, Bechtold T (2011) What does LiOH treatment offer for lyocell fibers? Investigation of structural changes. Ind Eng Chem Res 50:9087–9094

    Article  CAS  Google Scholar 

  • Okubayashi S, Griesser UJ, Bechtold T (2005) Moisture sorption/desorption behaviour of various manmade cellulosic fibres. J Appl Polym Sci 9(4):1621–1625

    Article  CAS  Google Scholar 

  • Ono S, Igase T (1979) Dope dyeing of rayon. JP 54038919, 24 Mar 1979, vide Chemical Abstract No. 91:40853

    Google Scholar 

  • Öztürk HB, Okubayashi S, Bechtold T (2006a) Splitting tendency of cellulosic fibers, part 1: the effect of shear force on mechanical stability of swollen lyocell fibers. Cellulose 13(4):393–402

    Article  CAS  Google Scholar 

  • Öztürk HB, Okubayashi S, Bechtold T (2006b) Splitting tendency of cellulosic fibers. part 2: effects of fiber swelling in alkali solutions. Cellulose 13(4):403–409

    Article  CAS  Google Scholar 

  • Öztürk HB (2008) Regenerated cellulosic fibers-Effect of alkali treatment on structure, chemical reactivity and fiber properties, PhD thesis, University of Innsbruck, Austria

    Google Scholar 

  • Öztürk HB, Bechtold T (2007) Effect of NaOH treatment on the interfibrillar swelling and dyeing properties of lyocell (TENCEL) fibers. Fibers Text East Eur 15(5–6):114–117

    Google Scholar 

  • Öztürk HB, Bechtold T (2008) Splitting tendency of cellulosic fibers, part 3: splitting tendency of viscose and modal fibers. Cellulose 15(1):101–109

    Article  CAS  Google Scholar 

  • Öztürk HB, Potthast A, Rosenau T, Abu-Rous M, MacNaughtan B, Schuster KC, Mitchell J, Bechtold T (2009) Changes in the intra- and inter- fibrillar structure of lyocell (TENCEL) fibers caused by NaOH treatment. Cellulose 16(1):37–52

    Article  CAS  Google Scholar 

  • Öztürk HB, Abu-Rous M, MacNaughtan B, Schuster KC, Mitchell J, Bechtold T (2010a) Changes in the inter- and intra- fibrillar structure of lyocell (TENCEL) fibers after KOH treatment. Macromol Symp 294(2):24–37

    Article  CAS  Google Scholar 

  • Öztürk HB, MacNaughtan B, Mitchell J, Bechtold T (2010b) Effects of tetramethylammonium hydroxide (TMAH) treatment on interfibrillar structure of lyocell (TENCEL) fibers. Mater Res Innov 14(3):224–230

    Article  CAS  Google Scholar 

  • Pecse A, Jordane AA, Carluci G, Cintio A (2005) Articles comprising cationic polysaccharides and acidic pH buffering means. US Patent Application 0124799 A1, 2005

    Google Scholar 

  • Persin Z, Stana-Kleinschek K, Sfiligoj-Smole M, Kreze T (2004) Determining the surface free energy of cellulose materials with the powder contact angle method. Text Res J 74(&):55–62

    Article  CAS  Google Scholar 

  • Peršin Z, Vesel A Strnad S, Stana-Kleinschek K, Mozetič M (2008) XPS and sorption measurements of plasma-treated regenerated cellulose fabrics and ageing effects. In: Proceedings of the 24th annual meeting of the polymer processing society. PPS-24, Salerno, Italy, June 15–19, 2008 [COBISS.SI-ID 12397590]

    Google Scholar 

  • Persin Z, Stana-Kleinschek K, Foster TJ, Van Dam JEG, Boeriu CG, Navard P (2011) Challenges and opportunities in polysaccharides research and technology: the EPNOE views for the next decade in the areas of materials, food and healthcare. Carbohydr Polym 84(1):22–32

    Article  CAS  Google Scholar 

  • Phrix-Werke A.-G. (1965) Spun-dyed regenerated cellulose. NL 6407087, 18 Jan 1965, vide Chemical Abstract No. 63:63815

    Google Scholar 

  • Prabaharan M, Carneiro N (2005) Effect of low-temperature plasma on cotton fabric and its application to bleaching and dyeing. Indian J Fibre Text 30(1):68–74

    CAS  Google Scholar 

  • Rakowski W (1989) Plasmamodifizierung der Wolle unter industriellen Bedingungen. Melliand Textilberichte 70:780–785

    Google Scholar 

  • Ranby BG (1952a) The mercerization of cellulose. I. Thermodynamic discussion. Acta Chem Scand 6:101–115

    Article  CAS  Google Scholar 

  • Ranby BG (1952b) The mercerization of cellulose. II. A phase-transition study with X-ray diffraction. Acta Chem Scand 6:116–127

    Article  CAS  Google Scholar 

  • Ranby BG (1952c) The mercerization of cellulose. III. A phase-transition study with electron diffraction. Acta Chem Scand 6:128–138

    Article  CAS  Google Scholar 

  • Ranby BG, Mark HF (1955) The mercerization of cellulose. IV. Phase transition studies on technical wood pulps and cotton linters. Svensk Papperstid 58:374–382

    CAS  Google Scholar 

  • Rashidi A, Moussavipourgharbi H, Mirjalili M, Ghoranneviss M (2004) Effect of low-temperature plasma treatment on surface modification of cotton and polyester fabrics. Indian J Fibre Text 29(1):74–78

    CAS  Google Scholar 

  • Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  Google Scholar 

  • Riccobono PX (1973) Plasma treatment of textile: a novel approach to the environment problems of desizing. Text Chem Color 5:239–248

    CAS  Google Scholar 

  • Riehen WM, Reinach FS (1971a) Difficulty soluble organic dye compositions for dyeing transparent, shaped, regenerated cellulose bodies. DE 1806199, 29 Apr 1971

    Google Scholar 

  • Riehen WE, Reinach FS (1971b) Sparingly soluble organic dyestuffs. US 3620788, 16 Nov 1971

    Google Scholar 

  • Ruef H (2001) Colored cellulosic shaped bodies. WO 01/11121, 15 Feb 2001

    Google Scholar 

  • Ruesch R, Schmidt H (1936) Preparation of dyed filaments and films. US 2043069, 2 Jun 1936

    Google Scholar 

  • Sarmadi AM, Kwon YA (1993) Improved water repellency and surface dyeing of polyester fabrics by plasma treatment. Text Chem Color 25(12):33–40

    CAS  Google Scholar 

  • Scallan AM, Grignon J (1979) The effect of cations on pulp and paper properties. Svensk Papperstidning 82(2):40–47

    CAS  Google Scholar 

  • Scallan AM, Grignon J (1983) The effect of acidic groups on the swelling of pulps: a review. Tappi J 66(11):73–75

    CAS  Google Scholar 

  • Schimper CB, Ibanescu C, Bechtold T (2009) Effect of alkali pre-treatment on hydrolysis of regenerated cellulose fibers (part 1: viscose) by cellulases. Cellulose 16(6):1057–1068

    Article  CAS  Google Scholar 

  • Schoenbach V, Weissert J, Teige W (1967) Pigment dispersions for coloring viscose spinning masses. US 3337360, 22 Aug 1967

    Google Scholar 

  • Schuster KC, Rohrer C, Eichinger D, Schmidtbauer J, Aldred P, Firgo H (2003) Environmentally friendly lyocell and rayon fibers. In: Wallenberger FT, Weston NE (eds) Natural fibers, polymers and composites—Recent advances. Kluwer Academic, Boston, MA, pp 123–146

    Google Scholar 

  • Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory. Preparation and characterization. Wiley, Weinheim. ISBN 978 3 527 29669 9

    Book  Google Scholar 

  • Shen L, Dai J (2007) Improvement of hydrophobic properties of silk and cotton by hexafluoropropene plasma treatment. Appl Surf Sci 253(11):5051–5055

    Article  CAS  Google Scholar 

  • Sheu GS, Shyu SS (1994) Surface properties and interfacial adhesion studies of aramid fibres modified by gas plasmas. Compos Sci Technol 52:489–497

    Article  CAS  Google Scholar 

  • Shishoo R (2007) Introduction – The potential of plasma technology in the textile industry. In: Shishoo R (ed) Plasma technologies for textiles. Woodhead Publishing Limited in association with The Textile Institute, Cambridge

    Chapter  Google Scholar 

  • Siroka B, Noisternig M, Griesser UJ, Bechtold T (2008) Characterisation of cellulosic fibers and fabrics by sorption and desorption. Carbohydr Res 343:2194–2199

    Article  CAS  PubMed  Google Scholar 

  • Široký J, Manian AP, Široká B, Abu-Rous M, Schlangen J, Blackburn RS, Bechtold T (2009) Alkali treatments of lyocell in continuous processes. Part 1: effects of temperature and alkali concentration in treatments of plain-woven fabrics. J Appl Polym Sci 113(6):3646–3655

    Article  CAS  Google Scholar 

  • Široký J, Blackburn RS, Bechtold T, Taylor J, White P (2010a) Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 17(1):103–115

    Article  CAS  Google Scholar 

  • Široký J, Blackburn RS, Bechtold T, Taylor J, White P (2010b) Alkali treatment of cellulose II fibers and effect on dye sorption. Carbohydr Polym 84(1):299–307

    Article  CAS  Google Scholar 

  • Soc. pour l’ind. chim. a Bale (1941) Pigment-containing spinning masses. CH 212386, 3 Mar 1941

    Google Scholar 

  • Sodhi RNS, Sahi VP, Mittelman MW (2001) Application of electron spectroscopy and surface modification techniques in the development of anti-microbial coatings for medical devices. J Electron Spectros Relat Phenomena 121:249–264

    Article  CAS  Google Scholar 

  • Sourty E, Ryan DH, Marchessault RH (1998) Characterization of magnetic membranes based on bacterial and man-made cellulose. Cellulose 5:5–17

    Article  CAS  Google Scholar 

  • Struszczyk H, Ciechanska D (1998) Perspectives of Enzymes for Processing Cellulose for New Chemical Fibers. Enzyme Applications in Fiber Processing, ACS Symposium Series 687/25, pp 306–317

    Google Scholar 

  • Sun D, Stylios GK (2004) The effect of low temperature plasma treatment on the scouring and dyeing processes of nature fabrics. Text Res J 74:751–756

    Article  CAS  Google Scholar 

  • Sun D, Stylios GK (2005) Investigating the plasma modification of natural fiber fabrics-the effect on fabric surface and mechanical properties. Text Res J 75:639–644

    Article  CAS  Google Scholar 

  • Sun D, Stylios GK (2006) Fabric surface properties affected by low temperature plasma treatment. J Mater Process Technol 173(2):172–177

    Article  CAS  Google Scholar 

  • Sun N, Swatloski RP, Maxim ML, Rahman M, Harland AG, Haque A, Spear SK, Daly DT, Rogers RD (2008) Magnetite-embedded cellulose fibers prepared from ionic liquid. J Mater Chem 18:283–290

    Article  CAS  Google Scholar 

  • Tan JS, Fisher LW, Marcus P (1975) 169th National Meeting of ACS, Philadelphia, PA, April

    Google Scholar 

  • Tatarova I, Manian A, Siroka B, Bechtold T (2010) Nonalkali swelling solution for cellulose. Cellulose 17:913–922

    Article  CAS  Google Scholar 

  • Tatarova I, MacNaughtan W, Manian AP, Siroka B, Bechtold T (2011) Steam processing of regenerated cellulose fabric in concentrated LiCl/urea solution. Macromol Mater Eng. doi:= 10.1002/mame.201100272

    Google Scholar 

  • Temmerman E, Leys C (2005) Surface modification of cotton yarn with a DC glow discharge in ambient air. Surf Coat Tech 200:686–689

    Article  CAS  Google Scholar 

  • Thorsen WJ, Kodani RY (1966) A corona discharge method of producing shrink-resistant wool and mohair. Text Res J 36(7):651–661

    Article  CAS  Google Scholar 

  • Thorsen WJ (1971) Improvement of cotton spinnability, strength, and abrasion resistance by corona treatment. Text Res J 41(5):455–458

    Article  CAS  Google Scholar 

  • Thorsen WJ (1974) Modification of the cuticle and primary wall of cotton by corona treatment. Text Res J 44(6):422–428

    Article  CAS  Google Scholar 

  • Tissington B, Pollard G, Ward IM (1992) Study of the effects of oxygen plasma treatment on the adhesion behaviour of polyethylene fibres. Compos Sci Technol 44:185–195

    Article  CAS  Google Scholar 

  • Vehviläinen M, Taina T, Rom M, Janicki J, Ciechańska D, Grönqvist S, Siika-Aho M, Christoffersson KE, Nousiainen P (2008) Effect of wet spinning parameters on the properties of novel cellulosic fibres. Cellulose 15(5):671–680

    Article  CAS  Google Scholar 

  • Vesel A, Mozetič M, Hladnik A, Dolenc J, Zule J, Milošević S, Krstulović N, Klanjšek Gunde M, Hauptman N (2007) Modification of ink-jet paper by oxygen-plasma treatment. J Phys D Appl Phys 40:3689–3696

    Article  CAS  Google Scholar 

  • Vesel A, Mozetic M, Strnad S, Peršin Z, Stana-Kleinschek K, Hauptman N (2009) Plasma modification of viscose textile. Vacuum 84(1):79–82

    Article  CAS  Google Scholar 

  • Vigo TL, Wade RH, Mitcham O, Welch CM (1969) Synergistic effect of mixed bases in the conversion of cotton cellulose I to cellulose II. Role of cations as cocatalysts for crystal lattice rearrangement. Text Res J 39(4):305–316

    CAS  Google Scholar 

  • Vigo TL, Mitcham O, Welch CM (1970) Decrystallization of cotton cellulose by benzyltrimethylammonium hydroxide followed by polar organic solvents. J Polym Sci (Polym Lett Ed) 8(6):385–393

    CAS  Google Scholar 

  • von der Eltz A (1996) Recycling of dyed cellulosic wastes. EP 0717131, 19 Jun 1996

    Google Scholar 

  • Wadsworth LC (2004) Nonwovens Science and Technology II In: Materials science and Engineering 554. http://www.engr.utk.edu/mse/Textiles/index.html. Accessed 4.5.2012

  • Wakida T, Takeda K, Tanaka I, Takagishi T (1989) Free radicals in cellulose fibers treated with low temperature plasma. Text Res J 59(1):49–53

    Article  CAS  Google Scholar 

  • Warwicker JO (1969) Cotton swelling in alkalis and acids. J Appl Polym Sci 13:41–54

    Article  CAS  Google Scholar 

  • Warwicker JO (1967) Effect of chemical reagents on the fine structure of cellulose. IV. Action of caustic soda on the fine structure of cotton and ramie. J Polym Sci A1 Polym Chem 5(10):2579–2593

    Article  CAS  Google Scholar 

  • Warwicker JO, Wright AC (1967) Function of sheets of cellulose chains in swelling reactions on cellulose. J Appl Polym Sci 11(5):659–671

    Article  CAS  Google Scholar 

  • Wegmann J, Booker C (1966) Colored viscose dope. DE 1220964, 14 Jul 1966

    Google Scholar 

  • Weise U, Maloney T, Paulapuro H (1996) Quantification of water in different states of interaction with wood pulp fibres. Cellulose 3:189–202

    Article  Google Scholar 

  • White P (2001) Lyocell: the production process and market development. In: Woodings C (ed) Regenerated cellulose fibers. Woodhead Publishing Ltd, Cambridge

    Google Scholar 

  • Whitehead W (1938) Colored organic derivatives of cellulose and method of making same. US 2128338, 30 Aug 1938

    Google Scholar 

  • Wong KK, Tao XM, Yuen CWM, Yeung KW (2000) Effect of plasma and subsequent enzymatic treatments on linen fabrics. J Soc Dyers Colour 116(7–8):208–214

    CAS  Google Scholar 

  • Wu M, Kuga S (2006) Cationization of cellulose fabrics by polyallylamine binding. J Appl Polym Sci 100:1668–1672

    Article  CAS  Google Scholar 

  • Yaman N, Özdoğan E, Seventekin N, Ayhan H (2009) Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff. Appl Surf Sci 255:6764–6770

    Article  CAS  Google Scholar 

  • Yasuda T, Okuno T, Miyama M, Yasuda H (1994) Penetration of plasma surface modification. I. CF4 and C2F4 glow discharge plasma. J Polym Sci A Polym Chem 32:1829–1837

    Article  CAS  Google Scholar 

  • Yoon NS, Lim YJ, Tahara M, Takagishi T (1996) Mechanical and dyeing properties of wool and cotton fabrics treated with low temperature plasma and enzymes. Text Res J 66(5):329–336

    Article  CAS  Google Scholar 

  • Yuranova T, Rincon AG, Bozzi A, Parra S, Pulgarin C, Albers P, Kiwi J (2006) Performance and characterization of Ag–cotton and Ag/TiO2 loaded textiles during the abatement of E. coli. J Photoch Photobio A 181(2–3):363–369

    Article  CAS  Google Scholar 

  • Zakaria S, Ong BH, Ahmad SH, Abdullah M, Yamauchi T (2005) Preparation of lumen-loaded kenaf pulp with magnetite (Fe3O4). Mater Chem Phys 89:216–220

    Article  CAS  Google Scholar 

  • Zeronian SH, Cabradilla KE (1972) Action of alkali metal hydroxides on cotton. J Appl Polym Sci 16:113–128

    Article  CAS  Google Scholar 

  • Zhang W, Okubayashi S, Bechtold T (2005a) Fibrillation tendency of cellulosic fibers – Part 1 effects of swelling. Cellulose 12(3):267–273

    Article  CAS  Google Scholar 

  • Zhang W, Okubayashi S, Bechtold T (2005b) Fibrillation tendency of cellulosic fibres –part 3. Effects of alkali pretreatment of lyocell fibre. Carbohyd Polym 59(2):173–179

    Article  CAS  Google Scholar 

  • Zhou J, Zhang L (2002) Cellulose microporous membranes prepared from NaOH/urea aqueous solution. J Membr Sci 210(1):77–99

    Article  CAS  Google Scholar 

  • Zuchairah IM, Pailthorpe MT, David SK (1997) Effect of glow discharge-polymer treatments on the shrinkage behavior and physical properties of wool fabric. Text Res J 67(1):69–74

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bechtold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Zemljic, L.F. et al. (2012). Polysaccharide Fibres in Textiles. In: Navard, P. (eds) The European Polysaccharide Network of Excellence (EPNOE). Springer, Vienna. https://doi.org/10.1007/978-3-7091-0421-7_7

Download citation

Publish with us

Policies and ethics