Skip to main content
Log in

On the Effect of Bank of Japan’s Outright Purchase on the JGB Yield Curve

  • Published:
Asia-Pacific Financial Markets Aims and scope Submit manuscript

Abstract

This paper examines an impact of Bank of Japan (BOJ)’s outright purchase on the Japanese government bond (JGB) yield curve. Particularly, we develop a simple state space model, which incorporates new factors regarding the BOJ’s announcement for its outright purchase and the current market outstanding with standard level and spread factors. Based on the model with a filtering method, we also implement an empirical analysis with time series of the BOJ’s announcement records during 2014/10/22–2017/8/3 in the quantitative–qualitative easing period to estimate the sensitivities of interest rates against the changes in the market expectation for the net supply with each sector of JGB. We expect the current work provides a basis for considering quantitative effects on the term structure by BOJ’s policy changes such as termination or significant reduction of the BOJ’s outright purchase. For instance, our scenario analysis shows substantial increase in the 30 year yield with widening of 20–30 year spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. For instance, see Nakano et al. (2017a, b, c) and Fukui et al. (2017).

  2. See Appendix for details.

  3. We appreciate Professor Kazuo Ueda for pointing out this observation.

References

  • Babbs, S. H., & Nowman, K. B. (1999). Kalman filtering of generalized Vasicek term structure models. Journal of Financial and Quantitative Analysis, 34(1), 115–130.

    Article  Google Scholar 

  • Christiano, L. J., Eichenbaum, M., & Evans, C. L. (1999). Monetary policy shocks: What have we learned and to what end? Handbook of macroeconomics, 1, 65–148.

    Article  Google Scholar 

  • Diaz, D., Theodoulidis, B., & Dupouy, C. (2016). Modelling and forecasting interest rates during stages of the economic cycle: A knowledge-discovery approach. Expert Systems with Applications, 44, 245–264.

    Article  Google Scholar 

  • Fujii, M., Shimada, Y., & Takahashi, A. (2010). A note on construction of multiple swap curves with and without collateral. FSA Research Review, 6, 139–157.

    Google Scholar 

  • Fujii, M., & Takahashi, A. (2011, January). Choice of collateral currency. Risk Magazine, pp. 120–125

  • Fukui, T., Sato, S., & Takahashi, A. (2017). Style analysis with particle filtering and generalized simulated annealing. International Journal of Financial Engineering, 04, 1750037.

    Article  Google Scholar 

  • Fukunaga, I., Naoya, K., & Junko, K. (2015). Maturity structure and supply factors in Japanese government bond markets. Monetary and Economic Studies, 33, 45–95.

    Google Scholar 

  • Geyer, A. L., & Pichler, S. (1999). A state-space approach to estimate and test multifactor Cox–Ingersoll–Ross models of the term structure. Journal of Financial Research, 22(1), 107–130.

    Article  Google Scholar 

  • Gordon, D. B., & Leeper, E. M. (1994). The dynamic impacts of monetary policy: An exercise in tentative identification. Journal of Political Economy, 102(6), 1228–1247.

    Article  Google Scholar 

  • Hamilton, J. D., & Wu, J. C. (2012). The effectiveness of alternative monetary policy tools in a zero lower bound environment. Journal of Money, Credit and Banking, 44(s1), 3–46.

    Article  Google Scholar 

  • Heath, D., Jarrow, R., & Morton, A. (1992). Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica: Journal of the Econometric Society, 60, 77–105.

    Article  Google Scholar 

  • Heidari, M., & Wu, L. (2003). Are interest rate derivatives spanned by the term structure of interest rates? The Journal of Fixed Income, 13(1), 75–86.

    Article  Google Scholar 

  • Ho, T. S., & Lee, S. B. (1986). Term structure movements and pricing interest rate contingent claims. The Journal of Finance, 41(5), 1011–1029.

    Article  Google Scholar 

  • Hull, J., & White, A. (1990). Pricing interest-rate-derivative securities. The Review of Financial Studies, 3(4), 573–592.

    Article  Google Scholar 

  • Jarrow, R., & Li, H. (2014). The impact of quantitative easing on the US term structure of interest rates. Review of Derivatives Research, 17(3), 287–321.

    Article  Google Scholar 

  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45.

    Article  Google Scholar 

  • Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory. Journal of Basic Engineering, 83(1), 95–108.

    Article  Google Scholar 

  • Nakano, M., Takahashi, A., & Takahashi, S. (2017a). Generalized exponential moving average (EMA) model with particle filtering and anomaly detection. Expert Systems with Applications, 73, 187–200.

    Article  Google Scholar 

  • Nakano, M., Takahashi, A., & Takahashi, S. (2017b). Creating investment scheme with state space modeling. Expert Systems with Applications, 81, 53–66.

    Article  Google Scholar 

  • Nakano, M., Takahashi, A., & Takahashi, S. (2017c). Fuzzy logic-based portfolio selection with particle filtering and anomaly detection. Knowledge-Based Systems, 131, 113–124.

  • Nakano, M., Takahashi, A., Tokioka, T., & Takahashi, S. (2017d). Effect on the yield curve by the net supply changes of JGB. Preprint. (in Japanese)

  • Oda, N., & Ueda, K. (2007). The effects of the Bank of Japan’s zero interest rate commitment and quantitative monetary easing on the yield curve: A macro-finance approach. Japanese Economic Review, 58(3), 303–328.

    Article  Google Scholar 

  • Oh, K. J., & Han, I. (2000). Using change-point detection to support artificial neural networks for interest rates forecasting. Expert Systems with Applications, 19(2), 105–115.

    Article  Google Scholar 

  • Shreve, S. E. (2004). Stochastic calculus for finance II: Continuous-time models (Vol. 11). Berlin: Springer.

    Google Scholar 

  • Streit, R. E., & Borenstein, D. (2012). Design and development of a fuzzy agent-based model to measure interest rate expectations. Expert Systems with Applications, 39(8), 7391–7402.

    Article  Google Scholar 

  • Strongin, S. (1995). The identification of monetary policy disturbances explaining the liquidity puzzle. Journal of Monetary Economics, 35(3), 463–497.

    Article  Google Scholar 

  • Takahashi, A., & Sato, S. (2001). A Monte Carlo filtering approach for estimating the term structure of interest rates. Annals of the Institute of Statistical Mathematics, 53(1), 50–62.

    Article  Google Scholar 

  • Takahashi, A., & Sato, S. (2002). An Application of Monte Carlo filter for estimating the term structure of interest rates. Proceedings of the Institute of Statistical Mathematics, 50(2), 133–147. (in Japanese).

    Google Scholar 

  • Tsuda, H. (2003). Prediction of individual bond prices via a dynamic bond pricing model: Application to japanese government bond price data. Asia-Pacific Financial Markets, 10(1), 59–85.

    Article  Google Scholar 

  • Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of financial economics, 5(2), 177–188.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express the deep appreciation to Professor Kazuo Ueda and Professor Kiyohiko Nishimura for their valuable suggestions. We are also grateful to Mr. Takahiko Suenaga for his comments. We thank Mr. Keita Suzuki for his support in the data construction. This research is supported by CARF (Center for Advanced Research in Finance). Also, this work is supported by JSPS KAKENHI Grant Numbers JP17J09046 and JP17J09127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Takahashi.

Appendix: Derivation of Equation (12)

Appendix: Derivation of Equation (12)

Recall that \(x_{t,1}\) and \(x_{t,2}\) follows stochastic processes (10) and (11), respectively. Then,

$$\begin{aligned} \int _t^T x_{s,1} ds = x_{t,1} \tau + \frac{\lambda }{2}\tau ^2 + \sigma _1 \int _0^\tau (\tau -u) dW_{u,1}^{\mathbb {Q}}, \end{aligned}$$
(16)
$$\begin{aligned} \int _t^T x_{s,2} ds = \frac{1-e^{-\kappa \tau }}{\kappa }x_{t,2} + \frac{\sigma _2}{\kappa } \int _0^\tau (1-e^{\kappa (u-\tau )}) dW_{u,2}^{\mathbb {Q}}. \end{aligned}$$
(17)

The above two equations derive the following equation with the assumption that the short rate \(r_t\) is the sum of two variables, i.e. Eq. (9):

$$\begin{aligned} {\begin{matrix} &{}P(t,T) = {{\mathrm{\mathbb {E}}}}^{\mathbb {Q}}\left[ e^{-\int _t^T r_s ds} | \mathcal {F}_t \right] = {{\mathrm{\mathbb {E}}}}^{\mathbb {Q}}\left[ e^{-\int _t^T (x_{s,1} + x_{s,2}) ds} | \mathcal {F}_t \right] \\ &{}\quad = \exp \left\{ -x_{t,1} \tau - \frac{\lambda }{2}\tau ^2 - \frac{1-e^{-\kappa \tau }}{\kappa }x_{t,2} \right\} \times \\ &{}{{\mathrm{\mathbb {E}}}}^{\mathbb {Q}}\left[ \exp \left\{ -\sigma _1 \int _0^\tau (\tau -u) dW_{u,1}^{\mathbb {Q}} - \frac{\sigma _2}{\kappa } \int _0^\tau (1-e^{\kappa (u-\tau )}) dW_{u,2}^{\mathbb {Q}} \right\} \right] \end{matrix}} \end{aligned}$$
(18)

Remark that

$$\begin{aligned} \int _0^\tau (\tau -u) dW_{u,1}^{\mathbb {Q}} = \int _0^\tau (\tau -u) \sqrt{1-\rho ^2} d\tilde{W}_{u,1}^{\mathbb {Q}} + \int _0^\tau (\tau -u) \rho dW_{u,2}^{\mathbb {Q}} \end{aligned}$$
(19)

where \(\tilde{W}_{t,1}^{\mathbb {Q}}\) is a one dimensional Brownian motion independent of \(W_{t,2}^{\mathbb {Q}} \), i.e. \(\tilde{W}_{t,1}^{\mathbb {Q}} \mathop {\perp \!\!\!\!\perp }W_{t,2}^{\mathbb {Q}} \), under a risk-neutral measure \(\mathbb {Q}\). Then,

$$\begin{aligned} {\begin{matrix} &{}{{\mathrm{\mathbb {E}}}}^{\mathbb {Q}}\left[ \exp \left\{ -\sigma _1 \int _0^\tau (\tau -u) dW_{u,1}^{\mathbb {Q}} - \frac{\sigma _2}{\kappa } \int _0^\tau (1-e^{\kappa (u-\tau )}) dW_{u,2}^{\mathbb {Q}} \right\} \right] \\ &{}\quad = {{\mathrm{\mathbb {E}}}}^{\mathbb {Q}}\left[ \exp \left\{ -\sigma _1\int _0^\tau (\tau -u) \sqrt{1-\rho ^2} d\tilde{W}_{u,1}^{\mathbb {Q}} \right\} \right] \times \\ &{}{{\mathrm{\mathbb {E}}}}^{\mathbb {Q}}\left[ \exp \left\{ -\sigma _1 \int _0^\tau (\tau -u) \rho dW_{u,2}^{\mathbb {Q}} - \frac{\sigma _2}{\kappa } \int _0^\tau (1-e^{\kappa (u-\tau )}) dW_{u,2}^{\mathbb {Q}} \right\} \right] \end{matrix}} \end{aligned}$$
(20)

Since Var\([\sigma _1\int _0^\tau (\tau -u) \sqrt{1-\rho ^2} d\tilde{W}_{u,1}^{\mathbb {Q}}] = \sigma _1^2(1-\rho ^2)\tau ^3/3\),

$$\begin{aligned}&{{\mathrm{\mathbb {E}}}}^{\mathbb {Q}}\left[ \exp \left\{ -\sigma _1\int _0^\tau (\tau -u) \sqrt{1-\rho ^2} d\tilde{W}_{u,1}^{\mathbb {Q}} \right\} \right] = \exp \left\{ \frac{\sigma _1^2(1-\rho ^2)}{6}\tau ^3 \right\} \end{aligned}$$
(21)
$$\begin{aligned}&{{\mathrm{\mathbb {E}}}}^{\mathbb {Q}}\left[ \exp \left\{ -\sigma _1 \int _0^\tau (\tau -u) \rho dW_{u,2}^{\mathbb {Q}} - \frac{\sigma _2}{\kappa } \int _0^\tau (1-e^{\kappa (u-\tau )}) dW_{u,2}^{\mathbb {Q}} \right\} \right] \nonumber \\&\quad = {{\mathrm{\mathbb {E}}}}^{\mathbb {Q}}\left[ \exp \left\{ - \int _0^\tau \left\{ \rho \sigma _1 (\tau -u) + \frac{\sigma _2}{\kappa } (1-e^{\kappa (u-\tau )}) \right\} dW_{u,2}^{\mathbb {Q}} \right\} \right] \nonumber \\&\quad = {{\mathrm{\mathbb {E}}}}^{\mathbb {Q}}\left[ \exp \left\{ - \int _{-\tau }^0 \left\{ -\rho \sigma _1 z + \frac{\sigma _2}{\kappa } (1-e^{\kappa z})\right\} dW_{z,2}^{\mathbb {Q}} \right\} \right] ;~~z:=u-\tau \end{aligned}$$
(22)

Since

$$\begin{aligned}&Var\left[ \int _{-\tau }^0 \left\{ -\rho \sigma _1 z + \frac{\sigma _2}{\kappa } (1-e^{\kappa z}) \right\} dW_{z,2}^{\mathbb {Q}} \right] \nonumber \\&\quad = \int _{-\tau }^{0} \left\{ \rho ^2 \sigma _1^2z^2 + \left( \frac{\sigma _2}{\kappa } \right) ^2 (1-e^{\kappa z})^2- 2\frac{\rho \sigma _1 \sigma _2}{\kappa } z(1-e^{\kappa z}) \right\} dz \nonumber \\&\quad = \frac{\rho ^2 \sigma _1^2 }{3}\tau ^3 -2A(\tau ) - 2 \frac{\rho \sigma _1 \sigma _2}{\kappa } \int _{-\tau }^{0} (z-ze^{\kappa z}) dz = \frac{\rho ^2 \sigma _1^2 }{3}\tau ^3 -2A(\tau ) \nonumber \\&\qquad +\, 2 \frac{\rho \sigma _1 \sigma _2}{\kappa } \left\{ \frac{\tau ^2}{2} + \frac{\tau e^{-\kappa \tau } - B(\tau ) }{\kappa } \right\} , \end{aligned}$$
(23)
$$\begin{aligned}&{{\mathrm{\mathbb {E}}}}^{\mathbb {Q}}\left[ \exp \left\{ - \int _{-\tau }^0 \left\{ -\rho \sigma _1 z + \frac{\sigma _2}{\kappa } (1-e^{\kappa z}) dW_{z,2}^{\mathbb {Q}} \right\} \right\} \right] \nonumber \\&\quad = \exp \left[ \frac{\rho ^2 \sigma _1^2 }{6}\tau ^3 -A(\tau ) + \frac{\rho \sigma _1 \sigma _2}{\kappa } \left\{ \frac{\tau ^2}{2} + \frac{\tau e^{-\kappa \tau } - B(\tau ) }{\kappa } \right\} \right] \end{aligned}$$
(24)

Eq. (18), (20), (21) and (24) derive Eq. (12).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, M., Takahashi, A., Takahashi, S. et al. On the Effect of Bank of Japan’s Outright Purchase on the JGB Yield Curve. Asia-Pac Financ Markets 25, 47–70 (2018). https://doi.org/10.1007/s10690-018-9238-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10690-018-9238-5

Keywords

Navigation