Skip to main content
Log in

An Asymptotic Expansion for Forward–Backward SDEs: A Malliavin Calculus Approach

  • Published:
Asia-Pacific Financial Markets Aims and scope Submit manuscript

Abstract

This paper proposes a new analytical approximation scheme for the representation of the forward–backward stochastic differential equations (FBSDEs) of Ma and Zhang (Ann Appl Probab, 2002). In particular, we obtain an error estimate for the scheme applying Malliavin calculus method for the forward SDEs combined with the Picard iteration scheme for the BSDEs. We also show numerical examples for pricing option with counterparty risk under local and stochastic volatility models, where the credit value adjustment is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The problem is considered under the physical measure and \(\left( \frac{\mu -r}{\sigma }\right) \) represents the market price of risk.

  2. See Fujii and Takahashi (2010, 2011) for the detail of modeling and pricing issues under default risk, for instance.

References

  • Bismut, J. M. (1973). Conjugate convex functions in optimal stochastic control. Journal of Political Economy, 3, 637–654.

    Google Scholar 

  • Carmona, R. (Ed.). (2009). Indifference pricing. Princeton: Princeton University Press.

    Google Scholar 

  • Crisan, D., Manolarakis, K., & Nee, C. (2013). Cubature methods and applications. In Paris-Princeton Lectures on mathematical finance 2013. Springer.

  • Crisan, D., & Delarue, F. (2012). Sharp derivative bounds for solutions of degenerate semi-linear partial differential equations. Journal of Functional Analysis, 263, 3024–3101.

    Article  Google Scholar 

  • Cvitanic, J., Ma, J., & Zhang, J. (2003). Efficient computation of hedging portfolios for options with discontinuous payoffs. Mathematical Finance, 13(1), 135–151.

  • Cvitanic, J., & Karatzas, I. (2003). Hedging contingent claims with constrained portfolios. The Annals of Applied Probability, 2, 652–681.

    Google Scholar 

  • El Karoui, N., Peng, S., & Quenez, M. C. (1997). Mathematical finance: Backward stochastic differential equations in finance, 7(1), 1–71.

  • Fujii, M., & Takahashi, A. (2012). Analytical approximation for non-linear FBSDEs with perturbation scheme. International Journal of Theoretical and Applied Finance, 15(5). doi:10.1142/S0219024912500343

  • Fujii, M., & Takahashi, A. (2012). Collateralized CDS and default dependence-implications for the central clearing. The Journal of Credit Risk, 8(3), 97–113.

  • Fujii, M., & Takahashi, A. (2012). Perturbative expansion of FBSDE in an incomplete market with stochastic volatility. Quarterly Journal of Finance, 2(3). doi:10.1142/S2010139212500152

  • Fujii, M., Sato, S., & Takahashi, A. (2015). An FBSDE approach to American option pricing with an interacting particle method. Asia-Pacific Financial Markets, 22–3, 239–260.

    Article  Google Scholar 

  • Fujii, M., & Takahashi, A. (2013). Derivative pricing under asymmetric and imperfect collateralization and CVA. Quantitative Finance, 13(5), 749–768.

    Article  Google Scholar 

  • Fujii, M., & Takahashi, A. (2015). Perturbative expansion technique for non-linear FBSDEs with interacting particle method. Asia-Pacific Financial Markets, 22(3), 283–304.

    Article  Google Scholar 

  • Gobet, E., & Labert, C. (2010). Solving BSDE with adaptive control variate. SIAM Journal on Numerical Analysis, 48(1), 257–277.

    Article  Google Scholar 

  • Gobet, E., Lemor, J.-P., & Warin, X. A. (2005). Regression-based Monte Carlo method to solve backward stochastic differential equations. The Annals of Applied Probability, 15(3), 2172–2202.

    Article  Google Scholar 

  • Kunitomo, N., & Takahashi, A. (2001). The asymptotic expansion approach to the valuation of interest rate contingent claims. Mathematical Finance, 11, 117–151.

    Article  Google Scholar 

  • Kunitomo, N., & Takahashi, A. (2003). On validity of the asymptotic expansion approach in contingent claim analysis. The Annals of Applied Probability, 13(3), 914–952 10.

  • Kusuoka, S. (2003). Malliavin calculus revisited. Journal of Mathematical Sciences University of Tokyo, 261–277.

  • Kusuoka, S., & Stroock, D. (1984). Applications of the Malliavin calculus part I. Stochastic Analysis (Katata/Kyoto 1982) 271–306.

  • Li, C. (2010). Managing volatility risk: Innovation of financial derivatives. Stochastic models and their analytical implementation, Ph.D. thesis in Columbia University.

  • Li, C. (2014). Closed-form expansion, conditional expectation, and option valuation. Mathematics of Operations Research, 39(2), 487–516.

    Article  Google Scholar 

  • Matsuoka, R., Takahashi, A., & Uchida, Y. (2006). A new computational scheme for computing Greeks by the asymptotic expansion approach. Asia-Pacific Financial Markets, 11, 393–430.

    Article  Google Scholar 

  • Ma, J., & Yong, J. (2000). Forward-backward stochastic differential equations and their applications. New York: Springer.

    Google Scholar 

  • Ma, J., & Zhang, J. (2002). Representation theorems for backward stochastic differential equations. The Annals of Applied Probability, 12(4), 1390–1418.

  • Nee, C. (2010). Lecture notes on Gradient bounds for solutions of stochastic differential equations, applications to numerical schemes

  • Nee, C. (2011). Sharp gradient bounds for the diffusion semigroup, Ph.D thesis in Imperial College London.

  • Nualart, D. (2006). The Malliavin calculus and related topics. New york: Springer.

    Google Scholar 

  • Pardoux, E., & Peng, S. (1990). Adapted solution of a backward stochastic differential equation. Systems Control Letters, 14(1), 55–61.

    Article  Google Scholar 

  • Shiraya, K., Takahashi, A., & Yamada, T. (2012). Pricing discrete barrier options under stochastic volatility. Asia-Pacific Financial Markets, 19–3, 205–232.

    Article  Google Scholar 

  • Takahashi, A., Takehara, K., & Toda, M. (2012). A general computation scheme for a high-order asymptotic expansion method. International Journal of Theoretical and Applied Finance. doi:10.1142/S0219024912500446.

  • Takahashi, A. (1999). An asymptotic expansion approach to pricing contingent claims. Asia-Pacific Financial Markets, 6, 115–151.

    Article  Google Scholar 

  • Takahashi, A., & Takehara, K. (2007). An asymptotic expansion approach to currency options with a market model of interest rates under stochastic volatility processes of spot exchange rates. Asia-Pacific Financial Markets, 14–1(2), 69–121.

    Article  Google Scholar 

  • Takahashi, A., & Yamada, T. (2012). An asymptotic expansion with push-down of Malliavin weights. SIAM Journal on Financial Mathematics, 3, 95–136.

    Article  Google Scholar 

  • Takahashi, A., & Yamada, T. (2015). On error estimates for asymptotic expansions with Malliavin weights: Application to stochastic volatility models. Mathematics of Operations Research, 40(3), 513–551.

    Article  Google Scholar 

  • Yamamoto, K., & Takahashi, A. (2009). A remark on a singular perturbation method for option pricing under a stochastic volatility model. Asia-Pacific Financial Markets, 16–4, 333–345.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Yamada.

Additional information

We are very grateful to Professor Seisho Sato (University of Tokyo) and Professor Kenichiro Shiraya (University of Tokyo) for their substantial help in numerical computations in Section 6. This research is supported by JSPS KAKENHI (Grant Numbers 25380389 and 16K13773).

Appendices

Appendix 1: Proof of Lemma 5.1

We prove the assertion by induction. First,

$$\begin{aligned} \frac{\partial }{\partial \varepsilon }X_{s}^{\varepsilon ,t,x}= & {} \sum _{i=1}^d \int _t^s \partial _x X_s^{\varepsilon ,t,x} (\partial _x X_u^{\varepsilon ,t,x})^{-1} \sigma _i(u, {X}_u^{\varepsilon ,t,x}) dW_u^i\end{aligned}$$
(82)
$$\begin{aligned}&+\,\varepsilon \sum _{i=1}^d \int _t^s \partial _x X_s^{\varepsilon ,t,x} (\partial _x X_u^{\varepsilon ,t,x})^{-1} \partial _x \sigma _i(u, {X}_u^{\varepsilon ,t,x})\sigma _i(u, {X}_u^{\varepsilon }) du.\quad \end{aligned}$$
(83)

Since \(\partial _x X_s^{\varepsilon ,t,x}, (\partial _x X_s^{\varepsilon ,t,x})^{-1} \in \mathcal{K}_0^T\), we have \(\frac{\partial }{\partial \varepsilon }X_{s}^{\varepsilon ,t,x} \in \mathcal{K}_1^T\).

For \(k\ge 2\), \(\frac{1}{k!}\frac{\partial ^k}{\partial \varepsilon ^k}X_{s}^{\varepsilon ,t,x}=\left( \frac{1}{k!}\frac{\partial ^k}{\partial \varepsilon ^k}X_{s}^{\varepsilon ,t,x,1},\ldots , \frac{1}{k!}\frac{\partial ^k}{\partial \varepsilon ^k}X_{s}^{\varepsilon ,t,x,d} \right) \) is recursively determined by the following:

$$\begin{aligned} \frac{1}{k!}\frac{\partial ^k}{\partial \varepsilon ^k}X_{s}^{\varepsilon ,t,x,j}= & {} \sum _{ \mathbf{l}_\beta ,\mathbf{d}_\beta }^{(k)} \int _t^s \left( \prod _{j=1}^{\beta } \frac{1}{l_j!} \frac{\partial ^{l_j}}{\partial \varepsilon ^{l_j}}X_{u}^{\varepsilon ,t,x, d_j} \right) \partial _{{d}_\beta }^{\beta } b^j(u,{X}_u^{\varepsilon ,t,x})du\end{aligned}$$
(84)
$$\begin{aligned}&+ \sum _{\mathbf{l}_\beta , \mathbf{d}_\beta }^{(k-1)} \int _t^s \left( \prod _{j=1}^{\beta } \frac{1}{l_j!} \frac{\partial ^{l_j}}{\partial \varepsilon ^{l_j}}X_{u}^{\varepsilon ,t,x, d_j} \right) \sum _{i=1}^d \partial _{\mathbf{d}_\beta }^{\beta } \sigma _i^j(u,{X}_u^{\varepsilon ,t,x})dW_u^i\end{aligned}$$
(85)
$$\begin{aligned}&+\,\varepsilon \sum _{ \mathbf{l}_\beta ,\mathbf{d}_\beta }^{(k)} \int _t^u \left( \prod _{j=1}^{k} \frac{1}{l_j!} \frac{\partial ^{l_j}}{\partial \varepsilon ^{l_j}}X_{u}^{\varepsilon ,t,x, d_j} \right) \sum _{i=1}^d \partial _{\mathbf{d}_k}^{k} \sigma _i^j(u,{X}_u^{\varepsilon ,t,x})dW_s^i\nonumber \\ \end{aligned}$$
(86)

where \(\partial _{{d}_\beta }^\beta = {\partial ^\beta \over \partial {x}_{d_1} \cdots \partial {x}_{d_\beta }}\),

$$\begin{aligned} \sum _{\mathbf{l}_\beta ,\mathbf{d}_\beta }^{(l)} := \sum _{\beta =1}^l \sum _{\mathbf{l}_\beta \in L_{l,\beta }} \sum _{\mathbf{d}_\beta \in \{1,\cdots ,d\}^\beta } \frac{1}{\beta !}, \end{aligned}$$
(87)

and \(L_{l,\beta } := \left\{ \mathbf{l}_\beta = (l_1,\ldots ,l_\beta );\ \sum _{j=1}^\beta l_j = l;\ (l, l_j, \beta \in \mathbf {N}) \right\} \). The above SDE is linear and the order of the Kusuoka-Stroock function \(\frac{1}{i!}\frac{\partial ^i}{\partial \varepsilon ^i}X_{s}^{\varepsilon ,t,x}\) is determined inductively by the term

$$\begin{aligned}&\sum _{\mathbf{l}_\beta , \mathbf{d}_\beta }^{(i-1)} \frac{1}{\beta !} \int _t^s \partial X_s^{\varepsilon ,t,x} \left( \partial X_u^{\varepsilon ,t,x}\right) ^{-1} \left( \prod _{j=1}^{\beta } \frac{1}{l_j!} \frac{\partial ^{l_j}}{\partial \varepsilon ^{l_j}}X_{u}^{\varepsilon ,t,x, d_j} \right) \sum _{i=1}^d \partial _{\mathbf{d}_\beta }^{\beta } \sigma _i(u,{X}_u^{\varepsilon ,t,x})dW_u^i \nonumber \\&\quad \in \mathcal{K}_i^T. \end{aligned}$$
(88)

Then, \(\frac{1}{i!}\frac{\partial ^i}{\partial \varepsilon ^i}X_{s}^{\varepsilon ,t,x} \in \mathcal{K}_i^T\). \(\Box \)

Appendix 2: Proof of Proposition 5.1

Let \((\varphi _n)_{n \in \mathbf{N}} \subset C_b^{\infty }(\mathbf{R}^d)\) be a mollifier converging to \(\varphi \). The following Taylor formula

$$\begin{aligned} \varphi _n(F_{T}^{\varepsilon ,t,x})= & {} \varphi _n(F_{T}^{0,t,x})+\sum _{i=1}^{N} \frac{\varepsilon ^i}{i!} \frac{\partial ^i}{\partial \varepsilon ^i} \varphi _n(F_{T}^{\varepsilon ,t,x})|_{\varepsilon =0}\\&+\,\varepsilon ^{N+1} \int _{0}^1 \frac{(1-u)^N}{N!} \frac{\partial ^{N+1}}{\partial \nu ^{N+1}}\varphi _n(F_{T}^{\nu ,t,x})|_{\nu =\varepsilon u}du, \end{aligned}$$

and the integration by parts on the Wiener space, we have

$$\begin{aligned} E[\varphi _n(F_{T}^{\varepsilon ,t,x})]= & {} E[\varphi _n(F_{T}^{0,t,x})] +\sum _{i=1}^{N} \varepsilon ^{i} \sum _{k}^{(i)} E[ \partial _{\alpha ^{(k)}} \varphi _n(F_{T}^{0,t,x}) \prod _{l=1}^k F_{\beta _{l},T}^{0,t,x,\alpha _l} ] \\&+\,\varepsilon ^{N+1} \int _{0}^1{(1-u)^N} (N+1)\sum _{k}^{(N+1)}E \left[ \partial _{\alpha ^{(k)}} \varphi _n(F_{T}^{\varepsilon u,t,x}) \prod _{l=1}^k F_{\beta _{l},T}^{\varepsilon u,t,x,\alpha _l} \right] du\\= & {} E[\varphi _n(F_{T}^{0,t,x})] +\sum _{i=1}^{N}{\varepsilon ^i} E[ \varphi _n(F_{T}^{0,t,x}) \pi _{i,T}^{t,x} ]\\&+\,\varepsilon ^{N+1} \int _{0}^1 {(1-u)^N} (N+1)\sum _{k}^{(N+1)} E[\partial _{\alpha ^{(1)}} \varphi _n(F_{T}^{\varepsilon u,t,x})H_{\alpha ^{(k-1)}}(F_{T}^{\varepsilon u,t,x},\\&\times \quad \prod _{l=1}^k F_{\beta _{l},T}^{\varepsilon u,t,x,\alpha _l} )]du, \end{aligned}$$

where, \(\pi _{i,T}^{t,x} =\sum _{k}^{(i)} H_{\alpha ^{(k)}}(F_{T}^{0,t,x},\prod _{l=1}^k F_{\beta _{l},T}^{0,t,x,\alpha _l} )=\sum _{k}^{(i)} H_{\alpha ^{(k)}}(X_{1,T}^{0,t,x},\prod _{l=1}^k X_{\beta _{l}+1,T}^{0,t,x,\alpha _l} )\).

Therefore, we have

$$\begin{aligned}&E[\varphi _n(X_T^{\varepsilon ,t,x})]\nonumber \\&\quad =E[\varphi _n(\bar{X}_{T}^{t,x})] +\sum _{i=1}^{N}{\varepsilon ^i} E[ \varphi _n(\bar{X}_{T}^{t,x}) \pi _{i,T}^{t,x} ]\nonumber \\&\qquad +\,\varepsilon ^{N+1} \int _{0}^1 {(1-u)^N} (N+1)\sum _{k}^{(N+1)} E[\partial _{\alpha ^{(1)}} \varphi _n(\tilde{X}_T^{\varepsilon u,t,x})H_{\alpha ^{(k-1)}}(F_{T}^{\varepsilon u,t,x},\nonumber \\&\qquad \times \prod _{l=1}^k F_{\beta _{l},T}^{\varepsilon u,t,x,\alpha _l} )]du, \end{aligned}$$
(89)

where \(\tilde{X}_T^{\varepsilon u,t,x}=X_T^{0,t,x}+\varepsilon F_{T}^{\varepsilon u,t,x}\), \(u\in [0,1]\). By Proposition 4.1 with Lemma 4.1 and 5.1, we have \(\sum _{k}^{(N+1)}H_{\alpha ^{(k-1)}}(F_{T}^{\varepsilon u,t,x},\prod _{l=1}^k F_{\beta _{l},T}^{\varepsilon u,t,x,\alpha _l} ) \in \mathcal{K}_{N+2}^T\).

Then, we obtain

$$\begin{aligned}&\left| E[\varphi _n(X_T^{\varepsilon ,t,x})]-E[\varphi _n(\bar{X}_T^{t,x})]+\sum _{i=1}^{N} \varepsilon ^{i} E[\varphi _n(\bar{X}_T^{t,x}) \pi _{i,T}^{t,x}] \right| \nonumber \\&\quad \le \varepsilon ^{N+1} \Vert \nabla \varphi _n \Vert _{\infty } (T-t)^{(N+2)/2}. \end{aligned}$$
(90)

Finally, by mollifier argument, we have the assertion. \(\square \)

Appendix 3: Proof of Proposition 5.2

For a mollifier \((\varphi _n)_{n \in \mathbf{N}} \subset C_b^{\infty }(\mathbf{R}^d)\) converging to \(\varphi \), we differentiate the expansion (89) of \(E[\varphi _n(X_T^{\varepsilon ,t,x})]\) with respect to initial x as follows: for \(1\le \eta \le d\),

$$\begin{aligned}&\frac{\partial }{\partial x_\eta }E[\varphi _n(X_T^{\varepsilon ,t,x})]\\&\quad =\frac{\partial }{\partial x_\eta }E[\varphi _n(\bar{X}_{T}^{t,x})] +\sum _{i=1}^{N}{\varepsilon ^i} \frac{\partial }{\partial x_\eta }E[ \varphi _n(\bar{X}_{T}^{t,x}) \pi _{i,T}^{t,x} ]\\&\qquad +\,\varepsilon ^{N+1} \int _{0}^1 {(1-u)^N} (N+1)\sum _{k}^{(N+1)} \frac{\partial }{\partial x_\eta }E\left[ \partial _{\alpha ^{(1)}} \varphi _n(\tilde{X}_T^{\varepsilon u,t,x})H_{\alpha ^{(k-1)}}\left( F_{T}^{\varepsilon u,t,x},\right. \right. \\&\qquad \prod _{l=1}^k\left. \left. { F_{\beta _{l},T}^{\varepsilon u,t,x,\alpha _l} }\right) \right] du. \end{aligned}$$

We have

$$\begin{aligned} \frac{\partial }{\partial x_\eta }E[\varphi _n(\bar{X}_T^{t,x})] =\sum _{j=1}^d E[\partial _{j} \varphi _n(\bar{X}_T^{t,x}) \partial _{\eta } \bar{X}_T^{t,x,j} ]=E[ \varphi _n(\bar{X}_T^{t,x}) N_{0,T}^{t,x,\eta }], \end{aligned}$$
(91)

and, for \(1\le i \le N\),

$$\begin{aligned} \frac{\partial }{\partial x_\eta } E[\varphi _n(\bar{X}_T^{t,x}) \pi _{i,T}^{t,x}]= & {} \sum _{j=1}^d \{ E[ \partial _{j} \varphi _n(\bar{X}_T^{t,x}) \partial _{\eta } \bar{X}_T^{t,x,j} \pi _{i,T}^{t,x} ] +E[\varphi _n(\bar{X}_T^{t,x}) \partial _{\eta } \pi _{i,T}^{t,x}] \}\nonumber \\= & {} E[\varphi (\bar{X}_T^{t,x})N_{i,T}^{t,x,\eta }]. \end{aligned}$$
(92)

Moreover, \(1\le \eta \le d\), \(u \in [0,1]\),

$$\begin{aligned}&\frac{\partial }{\partial x_\eta }E[\partial _{\alpha ^{(1)}} \varphi _n(\tilde{X}_T^{\varepsilon u,t,x})H_{\alpha ^{(k-1)}}(F_{T}^{\varepsilon u,t,x},\prod _{l=1}^k F_{\beta _{l},T}^{\varepsilon u,t,x,\alpha _l} )]\\&\quad =\sum _{j=1}^d E[\partial _{j,\alpha ^{(1)}} \varphi _n(\tilde{X}_T^{\varepsilon u,t,x})\partial _{\eta } \tilde{X}_T^{\varepsilon u,t,x,j}H_{\alpha ^{(k-1)}}(F_{T}^{\varepsilon u,t,x},\prod _{l=1}^k F_{\beta _{l},T}^{\varepsilon u,t,x,\alpha _l} )]\\&\qquad +\,E[\partial _{\alpha ^{(1)}} \varphi _n(\tilde{X}_T^{\varepsilon u,t,x}) \partial _\eta H_{\alpha ^{(k-1)}}(F_{T}^{\varepsilon u,t,x},\prod _{l=1}^k F_{\beta _{l},T}^{\varepsilon u,t,x,\alpha _l} )]\\&\quad = E \Biggl [\partial _{\alpha ^{(1)}} \varphi _n(\tilde{X}_T^{\varepsilon u,t,x}) \Biggl \{ \sum _{j=1}^dH_j( \tilde{X}_T^{\varepsilon u,t,x}, \partial _{\eta } \tilde{X}_T^{\varepsilon u,t,x,j}H_{\alpha ^{(k-1)}}(F_{T}^{\varepsilon u,t,x},\prod _{l=1}^k F_{\beta _{l},T}^{\varepsilon u,t,x,\alpha _l} ))\\&\qquad +\, \partial _\eta H_{\alpha ^{(k-1)}}(F_{T}^{\varepsilon u,t,x},\prod _{l=1}^k F_{\beta _{l},T}^{\varepsilon u,t,x,\alpha _l}) \Biggr \} \Biggr ] \end{aligned}$$

where \(\sum _{j=1}^dH_j( \tilde{X}_T^{\varepsilon u,t,x}, \partial _{\eta } \tilde{X}_T^{\varepsilon u,t,x,j}H_{\alpha ^{(k-1)}}(F_{T}^{\varepsilon u,t,x},\prod _{l=1}^k F_{\beta _{l},T}^{\varepsilon u,t,x,\alpha _l} ))\) \(+ \partial _\eta H_{\alpha ^{(k-1)}}(F_{T}^{\varepsilon u,t,x},\prod _{l=1}^k F_{\beta _{l},T}^{\varepsilon u,t,x,\alpha _l} ) \in \mathcal{K}_{N+1}^T\). Therefore, we have the assertion. \(\square \)

Appendix 4: Proof of Lemma 5.2

\(u^{\varepsilon ,0,N}\) and \(\partial _x u^{\varepsilon ,0,N}\sigma \) are represented as

$$\begin{aligned} u^{\varepsilon ,0,N}(t,x)= & {} E [g(\bar{X}_T^{t,x}) \vartheta _{T} ] +E \left[ \int _t^{T} f(s,\bar{X}_s^{t,x}, 0,0)\vartheta _{s} ds \right] ,\\ \partial _x u^{\varepsilon ,0,N}\sigma (t,x)= & {} \left\{ E \left[ g(\bar{X}_T^{t,x}) \gamma _{T} \right] +E \left[ \int _t^{T} f(s,\bar{X}_s^{t,x}, 0,0)\gamma _{s} ds \right] \right\} \varepsilon \sigma (t,x) , \end{aligned}$$

where \(\vartheta _s=1+ \sum _{i=1}^{N} \varepsilon ^i \pi _{i,s}^{t,x}\) and \(\gamma _s=\sum _{i=0}^{N} \varepsilon ^i N_{i,s}^{t,x}\). Remark that \(\vartheta _s \in \mathcal{K}_{\min \{0,1,\ldots ,N \} }^T=\mathcal{K}_0^T\) and \(\gamma _s \in \mathcal{K}_{\min \{-1,0,\ldots ,N-1\}}^T=\mathcal{K}_{-1}^T\). Since g is Lipschitz continuous and of linear growth, we obtain

$$\begin{aligned}&\left| E [g(\bar{X}_T^{t,x}) \vartheta _{T} ]\right| \le \Vert g(\bar{X}_T^{t,x})\Vert _{L^p} \Vert \vartheta _{T}\Vert _{L^q} \le C(T,x), \end{aligned}$$
(93)
$$\begin{aligned}&\left| E [g(\bar{X}_T^{t,x}) \gamma _{T} ] \varepsilon \sigma (t,x) \right| \le \varepsilon C_L C(T,x). \end{aligned}$$
(94)

Also, as f is of linear growth, we have

$$\begin{aligned}&\left| E [\int _t^T f(s,\bar{X}_s^{t,x},0,0) \vartheta _s ds ]\right| \le \int _t^T C(T,x) ds, \end{aligned}$$
(95)
$$\begin{aligned}&\left| E [\int _t^T f(s,\bar{X}_s^{t,x},0,0) \gamma _s ds ] \varepsilon \sigma (t,x) \right| \le \int _t^T C(T,x) \frac{1}{\sqrt{s-t}} ds, \end{aligned}$$
(96)

where C(Tx) denotes a non-negative, non-decreasing and finite function of at most polynomial growth in x depending on T. Then, we obtain estimates for \(u^{\varepsilon ,0,N}\) and \(\partial _x u^{\varepsilon ,0,N}\sigma \):

$$\begin{aligned} |u^{\varepsilon ,0,N}(t,x) |\le & {} C(T,x), \end{aligned}$$
(97)
$$\begin{aligned} | \partial _x u^{\varepsilon ,0,N}\sigma (t,x) |\le & {} C(T,x). \end{aligned}$$
(98)

Note that for \(k \ge 1\),

$$\begin{aligned} u^{\varepsilon ,k,N}(t,x)= & {} E [g(\bar{X}_T^{t,x}) \vartheta _{T} ]\\&+\,E \left[ \int _t^{T} f(s,\bar{X}_s^{t,x}, u^{\varepsilon ,k-1,N}(s,\bar{X}_s^{t,x}),\partial _x u^{\varepsilon ,k-1,N}\right. \\&\left. \times \,\sigma (s,\bar{X}_s^{t,x}))\vartheta _{s} ds \right] ,\\ \partial _x u^{\varepsilon ,k,N}\sigma (t,x)= & {} E [g(\bar{X}_T^{t,x}) \gamma _{T} ]\varepsilon \sigma (t,x)\\&+\,E \left[ \int _t^{T} f(s,\bar{X}_s^{t,x}, u^{\varepsilon ,k-1,N}(s,\bar{X}_s^{t,x}),\partial _x u^{\varepsilon ,k-1,N}\right. \\&\left. \times \,\sigma (s,\bar{X}_s^{t,x}))\gamma _{s} ds \right] \varepsilon \sigma (t,x), \end{aligned}$$

with (93), (94) and

$$\begin{aligned}&\left| E\left[ \int _t^T f(s,\bar{X}_s^{0,t,x},u^{\varepsilon ,k-1,N}(s,\bar{X}_s^{t,x}),\partial _x u^{\varepsilon ,k-1,N}\sigma (s,\bar{X}_s^{t,x})) \vartheta _s ds \right] \right| \nonumber \\&\le \int _t^T C(T,x) ds, \end{aligned}$$
(99)
$$\begin{aligned}&\left| E\left[ \int _t^T f(s,\bar{X}_s^{0,t,x},u^{\varepsilon ,k-1,N}(s,\bar{X}_s^{t,x}),\partial _x u^{\varepsilon ,k-1,N}\sigma (s,\bar{X}_s^{t,x})) \gamma _s ds\right] \varepsilon \sigma (t,x)\right| \nonumber \\&\le \int _t^T C(T,x) \frac{1}{\sqrt{s-t}} ds. \end{aligned}$$
(100)

Then, recursively using (93), (94), (99) and (100) we obtain (49) and (50). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, A., Yamada, T. An Asymptotic Expansion for Forward–Backward SDEs: A Malliavin Calculus Approach. Asia-Pac Financ Markets 23, 337–373 (2016). https://doi.org/10.1007/s10690-016-9220-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10690-016-9220-z

Keywords

Navigation