Skip to main content
Log in

Emission Allowance as a Derivative on Commodity-Spread

  • Published:
Asia-Pacific Financial Markets Aims and scope Submit manuscript

Abstract

We provide a valuation formula for emission allowance. Assuming that the value of emission allowance on the last day of a trading phase is equal to a spread of commodity prices (e.g. electricity and natural gas) when the spread is positive and less than the penalty, we show that the emission allowance price is equal to the value of a portfolio of European call options on the spread of the commodities. Using the formula, we obtain a hedging strategy for emission allowance trading. We also empirically analyze option value embedded in emission allowance, and find by numerical analysis that the option value is relatively large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This is because emission allowance is needed only at the end date \(T\) when the central authority checks the companies in order to penalize any offenders. Thus, if the emission allowance price at \(t (\le T)\) is lower (resp. higher) than the present value of the price at \(T\), the companies can increase their profits by adopting a trading strategy to buy (resp. sell) allowance at \(t\) and to sell (resp. buy) them back at \(T\), which contradicts their profit maximization. See also Nakajima and Ohashi (2010).

  2. This can be understood intuitively as follows. Let \(h_{2}\) be the amount of fuel necessary for producing one marginal unit of electricity. Let \(k_{e}\) be the amount of \(\text{ CO}_2\) emissions associated with burning one marginal unit of electricity. Then, the equality of marginal revenue and marginal costs implies \(S_1(T) = h_2 S_2(T) + k_e S_e(T)\), which leads to \(S_e(T) = \frac{1}{k_e} (S_1(T) - h_2 S_2(T))\). See Nakajima and Ohashi (2010) for more general cases.

  3. This is indicated by Nakajima and Ohashi (2010).

  4. If power companies generate electricity by using several kinds of fuels, say coal and natural gas, a similar spread relation is obtained among the prices of emission allowance and different fuels through fuel-switching by the power companies. Naturally, the same theoretical results in the following hold for this relation among emission allowance and fuel prices.

  5. The volatility structure is given in the “Appendix”.

  6. The proof is provided upon request.

  7. From another point of view, \(S_e(t) - S_e^\prime (t)\) and \(S_e(t) - S_e^{\prime \prime }(t) = S_e(t) - S_e^\prime (t) + S_e^\prime (t) - S_e^{\prime \prime }(t)\) can be interpreted as pricing errors for the emission allowance price when \(( (H_1 S_1(T) - H_2 S_2(T)) \wedge Z ) \vee 0\) is replaced by \((H_1 S_1(T) - H_2 S_2(T)) \vee 0\) and \(H_1 S_1(T) - H_2 S_2(T)\), respectively, i.e., when the investor misprices the emission allowance spot price at the end of period \(T\).

  8. The proof is provided upon request.

  9. Since the payoff at maturity \(T\) is

    $$\begin{aligned} (S_e(T) - K)^+&= ( ( ( (H_1 S_1(T) - H_2 S_2(T)) \wedge Z ) \vee 0 ) - K ) \vee 0 \\&= (((H_1 S_1(T) - H_2 S_2(T)) \wedge Z) \vee 0) - K \end{aligned}$$

    when \(K \le 0\), the emission allowance spot price is \(S_e(t) - e^{-r(T-t)} K\).

  10. Cf. (Karatzas and Shreve (1991), Section 5.6), or (Liptser and Shiryaev (2001), p.151, Thm. 4.10).

References

  • Chao, H.-P., & Wilson, R. (2003). Option value of emission allowances. Journal of Reguratory Economics, 5(3), 233–249.

    Article  Google Scholar 

  • Chesney, M., & Taschini, L. (2009). The endogenous price dynamics of emission allowances and an application to co2 option pricing. Working paper. Swiss Banking Institute, University of Zürich, Switzerland.

  • Cox, John C., Ingersoll, J. E, Jr, & Ross, S. A. (1981). The relation between forward prices and futures prices. Journal of Financial Economics, 9(4), 321–346.

    Article  Google Scholar 

  • Cronshaw, M. B., & Kruse, J. B. (1996). Regulated firms in pollution permit markets with banking. Journal of Regulatory Economics, 9(2), 179–189.

    Article  Google Scholar 

  • Daskalakis, G., Psychoyios, D., & Markellos, R. N. (2009). Modeling $\text{ CO}_2$ emission allowance prices and derivatives: Evidence from the European trading scheme. Journal of Banking & Finance, 33(7), 1230–1241.

    Article  Google Scholar 

  • Fehr, M., & Hinz, J. (2007). A quantitative approach to carbon price risk modeling. In CFC Commodities Conference.

  • Fezzi, C., & Bunn, D. W. (2009). Structural interactions of European carbon trading and energy prices. The Journal of Energy Market, 2(4), 53–69.

    Google Scholar 

  • Grüll, G., & Taschini, L. (2011). Cap-and-trade properties under different hybrid scheme designs. Journal of Environmental Economics and Management, 61(1), 107–118.

    Article  Google Scholar 

  • Karatzas, I., & Shreve, S. E. (1991). Brownian motion and stochastic calculus (2nd ed.). New York: Springer.

    Google Scholar 

  • Kijima, M., Maeda, A., & Nishide, K. (2010). Equilibrium pricing of contingent claims in tradable permit markets. Journal of Futures Markets, 30(6), 559–589.

    Google Scholar 

  • Liptser, R. S., & Shiryaev A. N. (2001). Statistics of random processes I. General theory. New York: Springer (2nd, rev. and expanded edition).

  • Maeda, A. (2004). Impact of banking and forward contracts on tradable permit markets. Environmental Economics and Policy Studies, 6(2), 81–102.

    Google Scholar 

  • Mansanet-Bataller, M., Pardo, A., & Valor, E. (2007). CO2 prices, energy and weather. The Energy Journal, 28(3), 73–92.

    Article  Google Scholar 

  • Nakajima, K., & Ohashi, K. (2010). Relations of commodity prices with emission allowances. Working paper. Graduate School of International Corporate Strategy, Hitotsubashi University, Tokyo, January 2010.

  • Rubin, J. D. (1996). A model of intertemporal emission trading, banking, and borrowing. Journal of Environmental Economics and Management, 31(3), 269–286.

    Article  Google Scholar 

  • Schennach, S. M. (2000). The economics of pollution permit banking in the context of Title IV of the 1990 Clean Air Act Amendments. Journal of Environmental Economics and Management, 40(3), 189–210.

    Article  Google Scholar 

  • Seifert, J., Uhrig-Homburg, M., & Wagner, M. (2008). Dynamic behavior of $\text{ CO}_2$ spot prices. Journal of Environmental Economics and Management, 56(2), 180–194.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Ohashi.

Additional information

We are grateful to Yasushi Asako, Yuelan Chen, Michael Chng, Masazumi Hattori, Fumio Hayashi, Toshiki Honda, Takashi Kanamura, Ryou Katou, Toshikazu Kimura, Kentaro Koga, Peter Lerner, Andrea Macrina, Akira Maeda, Ryozo Miura, Hidetoshi Nakagawa, Nobuhiro Nakamura, Tatsuyoshi Okimoto, Marcel Prokopczuk, Shigenori Shiratsuka, Tomoaki Shouda, Luca Taschini, Giovanni Urga, Tetsuya Yamada, Toshinao Yoshiba, Martin Young, all seminar participants at Hitotsubashi University, Bank of Japan, 2008 FMA/AsianFA/NFA Doctoral Student Consortium, 2010 NFA, 2011 MFA, 2011 AsianFA, and 2011 FMA annual meetings, and anonymous referees for their many valuable comments and discussions.

Appendix

Appendix

1.1 The Solutions of Spot Prices

The closed formulae for (3) and (4) are derived as follows. Let

$$\begin{aligned} d \ln S_i(t)&\equiv ( \beta _{S_i 0} (t) + \beta _{S_i \delta _i} \delta _i(t) ) dt + \sigma _{S_i} dW_{S_i}(t) \\ d\delta _i(t)&\equiv (\beta _{\delta _i 0} + \beta _{\delta _i \delta _i} \delta _i(t)) dt + \sigma _{\delta _i} dW_{\delta _i}(t) \end{aligned}$$

where

$$\begin{aligned}&\beta _{S_i 0} (t) = r - \frac{\sigma _{S_i}^2}{2} \\&\beta _{S_i \delta _i} = -1 \\&\beta _{\delta _i 0} = \kappa _i \hat{\alpha }_i \\&\beta _{\delta _i \delta _i} = - \kappa _i. \end{aligned}$$

This equation can be solved as follows.Footnote 10

$$\begin{aligned} {{\varvec{X}}}(T) = e^{T {\varvec{\beta }}} \left\{ e^{-t {\varvec{\beta }}} {{\varvec{X}}}(t) + \int \limits _t^T e^{- s {\varvec{\beta }}} {\varvec{\beta }}_0(s) ds + \int \limits _t^T e^{- s {\varvec{\beta }}} d{{\varvec{W}}}_0(s) \right\} \end{aligned}$$
(8)

where

$$\begin{aligned}&{{\varvec{X}}}(t) = [ \ln S_1 (t), \ln S_2(t), \delta _1(t), \delta _2(t) ]^\top \nonumber \\&{\varvec{\beta }}_0 (t) = [ \beta _{S_1 0}(t), \beta _{S_2 0}(t), \beta _{\delta _1 0}, \beta _{\delta _2 0} ]^\top \nonumber \\&{\varvec{\beta }} = \left[ \begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l}&0&0&\beta _{S_1 \delta _1}&0 \\&0&0&0&\beta _{S_2 \delta _2} \\&0&0&\beta _{\delta _1 \delta _1}&0 \\&0&0&0&\beta _{\delta _2 \delta _2} \end{array} \right] \end{aligned}$$

and \({\varvec{W}}_0(t) = [\sigma _{S_1} W_{S_1}(t), \ldots , \sigma _{S_n} W_{S_n}(t), \sigma _{\delta _1} W_{\delta _1}(t), \ldots , \sigma _{\delta _n} W_{\delta _n}(t) ]^\top \) is a scaled Brownian motion vector.

Denote by \(E[\cdot ]\) the expectation under the risk-neutral probability. The mean and covariances of \(\ln S_i(T)\) are

$$\begin{aligned} \mu _{X_i}(t, T)&= E_t [ \ln S_i(T) ] \\&= \Bigg [ e^{T {\varvec{\beta }}} \Bigg \{ e^{-t {\varvec{\beta }}} {{\varvec{X}}}(t) + \int \limits _t^T e^{- s {\varvec{\beta }}} {\varvec{\beta }}_0 (s) ds \Bigg \} \Bigg ]_i \\ \sigma _{X_i X_j} (t, T)&= E_t[ (\ln S_i(T) - \mu _{X_i}(t, T)) (\ln S_j(T) - \mu _{X_i}(t, T))] \\&= \Bigg [\int \limits _t^T (e^{(T-s) {\varvec{\beta }}}) {\varvec{\Sigma }} (e^{(T-s) {\varvec{\beta }}})^\top ds \Bigg ]_{i j} \end{aligned}$$

where \([\cdot ]_{i}\) and \([\cdot ]_{ij}\) are \(i\)th element of vector and \([i,j]\) th element of matrix, respectively, and the covariance matrix

$$\begin{aligned} {\varvec{\Sigma }} = \left[ \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} \sigma _{S_1}^2&\rho _{S_1 S_2} \sigma _{S_1} \sigma _{S_2}&\rho _{S_1} \sigma _{S_1} \sigma _{\delta _1}&\rho _{S_1 \delta _2} \sigma _{S_1} \sigma _{\delta _2} \\ \rho _{S_2 S_1} \sigma _{S_2} \sigma _{S_1}&\sigma _{S_2}^2&\rho _{S_2 \delta _1} \sigma _{S_2} \sigma _{\delta _1}&\rho _{S_2 \delta _2} \sigma _{S_2} \sigma _{\delta _2} \\ \rho _{\delta _1 S_1} \sigma _{\delta _1} \sigma _{S_1}&\rho _{\delta _1 S_2} \sigma _{\delta _1} \sigma _{S_2}&\sigma _{\delta _1}^2&\rho _{\delta _1 \delta _2} \sigma _{\delta _1} \sigma _{\delta _2} \\ \rho _{\delta _2 S_1} \sigma _{\delta _2} \sigma _{S_1}&\rho _{\delta _2 S_2} \sigma _{\delta _2} \sigma _{S_2}&\rho _{\delta _2 \delta _1} \sigma _{\delta _2} \sigma _{\delta _1}&\sigma _{\delta _2}^2 \end{array} \right]. \end{aligned}$$

We use notations

$$\begin{aligned}&{\varvec{\mu }}_{X}(t, T) \triangleq \left( \begin{array}{l} \mu _{X_1}(t, T) \\ \mu _{X_2}(t, T) \end{array} \right) \\&{\varvec{\Sigma }}_{X}(t, T) \triangleq \left( \begin{array}{ll} \sigma _{X_1 X_1}(t, T)&\sigma _{X_1 X_2} (t, T) \\ \sigma _{X_2 X_1}(t, T)&\sigma _{X_2 X_2} (t, T) \end{array} \right) \end{aligned}$$

1.2 Proof of Proposition 2.1

Let us use the notation \(\Phi (\cdot )\) and \(\phi (\cdot )\) as the standard normal distribution and density function, respectively, and also \(N( \cdot | \mu , \sigma ^2)\) and \(n( \cdot | \mu , \sigma ^2)\) as normal distribution and density function with \(\mu \) and \(\sigma ^2\) as mean and variance, respectively. We calculate the following equation in this subsection.

$$\begin{aligned} S_e(t) = e^{-r(T-t)} E_t [ ( (H_1 S_1(T) - H_2 S_2(T)) \wedge Z ) \vee 0 ]. \end{aligned}$$

For notational convenience, we will omit the time parameters such as \(\mu _{X_i} = \mu _{X_i}(t, T)\). The expectation is

$$\begin{aligned}&E_t [ ( (H_1 S_1(T) - H_2 S_2(T)) \wedge Z ) \vee 0 ] = H_1 \int \limits _{D_1} \exp \{x_1 \} n( {{\varvec{x}}} | {\varvec{\mu }}_X, \Sigma _X ) d{{\varvec{x}}} \\&\quad - H_2 \int \limits _{D_1} \exp \{ x_2 \} n( {{\varvec{x}}} | {\varvec{\mu }}_X, \Sigma _X ) d{{\varvec{x}}} + Z \int \limits _{D_2} n( {{\varvec{x}}} | {\varvec{\mu }}_X, \Sigma _X ) d{{\varvec{x}}} \end{aligned}$$

where

$$\begin{aligned} d(x_2, Z)&= \ln (H_2 \exp \{ x_2 \} + Z) - \ln H_1 \\ D_1&= \{ {{\varvec{x}}} = [x_1, x_2]^\top | d(x_2, 0) \le x_1 \le d(x_2, Z) \} \\ D_2&= \{ {{\varvec{x}}} = [x_1, x_2]^\top | x_1 > d(x_2, Z) \}. \end{aligned}$$

We calculate each integral. Let us use \({{\varvec{e}}}_i\) to be the unit vector which \(i\)-th element is one. For the integrals of the first and second term, we have

$$\begin{aligned}&\int \limits _{D_1} \exp \{ x_i \} n( {{\varvec{x}}} | {\varvec{\mu }}_X, \Sigma _X ) d{{\varvec{x}}} = \exp \left\{ \mu _{X_i} + \frac{1}{2} \sigma _{X_i}^2 \right\} \int \limits _{D_1} (2 \pi )^{-1} | \Sigma _X |^{-\frac{1}{2}} \\&\quad \times \exp \Bigg \{ -\frac{1}{2} ({{\varvec{x}}} - {\varvec{\mu }}_X - \Sigma _X {{\varvec{e}}}_i)^\top \Sigma _X^{-1} ({{\varvec{x}}} - {\varvec{\mu }}_X - \Sigma _X {{\varvec{e}}}_i) \Bigg \} d{{\varvec{x}}} \end{aligned}$$

where we completed the squares. Furthermore, the integral can be expanded by changing the variables.

$$\begin{aligned}&\int \limits _{D_1} (2 \pi )^{-1} | \Sigma _X |^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} ({{\varvec{x}}} - {\varvec{\mu }}_X - \Sigma _X {{\varvec{e}}}_1)^\top \Sigma _X^{-1} ({{\varvec{x}}} - {\varvec{\mu }}_X - \Sigma _X {{\varvec{e}}}_1) \right\} d{{\varvec{x}}} \\&\quad = \int \limits _{-\infty }^\infty \int \limits _{d_1(x_2, 0)}^{d_1(x_2, Z)} (2 \pi (1 - \rho _{X_1 X_2}^2) )^{-\frac{1}{2}} \sigma _{X_1}^{-1} \exp \left\{ - \frac{y^2}{2} \right\} (1 - \rho _{X_1 X_2}^2)^{\frac{1}{2}} \sigma _{X_1} dy \\&\qquad \times (2 \pi )^{-\frac{1}{2}} \sigma _{X_2}^{-1} \exp \Bigg \{ -\frac{1}{2} \Bigg ( \frac{x_2 - \mu _{X_2} - \sigma _{X_1 X_2}}{\sigma _{X_2}} \Bigg )^2 \Bigg \} dx_2 \\&\quad = \int \limits _{-\infty }^\infty (\Phi (d_1(x_2, Z)) - \Phi (d_1(x_2, 0))) n(x_2 | \mu _{X_2} + \sigma _{X_1 X_2}, \sigma _{X_2}^2) dx_2 \end{aligned}$$

where

$$\begin{aligned} d_1(x, z)&= \frac{\ln (H_2 \exp \{ x \} + z) - \ln H_1 - \mu _{X_1} - \sigma _{X_1}^2}{\sigma _{X_1} \sqrt{1 - \rho _{X_1 X_2}^2}} \\&- \frac{\rho _{X_1 X_2} \sigma _{X_1} \frac{x - \mu _{X_2} - \sigma _{X_1 X_2}}{\sigma _{X_2}}}{\sigma _{X_1} \sqrt{1 - \rho _{X_1 X_2}^2}} \end{aligned}$$

In addition, we can simplify the second part of the integration. Generally it is known that,

$$\begin{aligned} \Phi (d_1)&= P(X_1 \le d_1) = P (X_1 \le d_1, X_2 \le \infty ) \nonumber \\&= \int \limits _{-\infty }^\infty \Phi \left(\frac{d_1 - \rho _{12} x_2}{\sqrt{1 - \rho _{12}^2}} \right) \phi (x_2) dx_2 \end{aligned}$$
(9)

where

$$\begin{aligned}&[X_1, X_2] \sim N(\mathbf{0 }, {\varvec{\Sigma }}) \\&{\varvec{\Sigma }} = \left[ \begin{array}{ll} 1&\rho _{12} \\ \rho _{12}&1 \\ \end{array} \right] \end{aligned}$$

Notice that,

$$\begin{aligned} d_1(x_2, 0)&= \frac{\ln (H_2 / H_1) - \mu _{X_1} - \sigma _{X_1}^2 + \rho _{X_1 X_2} \sigma _{X_1} \frac{\mu _{X_2} + \sigma _{X_1 X_2}}{\sigma _{X_2}}}{\sigma _{X_1} \sqrt{1 - \rho _{X_1 X_2}^2}} \\&- \frac{\left( \frac{\rho _{X_1 X_2} \sigma _{X_1}}{\sigma _{X_2}} - 1 \right) (\sigma _{X_2} \hat{x}_1 + \mu _{X_2} + \sigma _{X_1 X_2})}{\sigma _{X_1} \sqrt{1 - \rho _{X_1 X_2}^2}} \\&= \frac{\hat{\mu }_1 - \hat{\rho } \hat{x}_1}{\sqrt{1 - \hat{\rho }^2}} \end{aligned}$$

where we defined \(\hat{x}_1 = (x_2 - \mu _{X_2} - \sigma _{X_1 X_2})/\sigma _{X_2}\) and used the following facts.

$$\begin{aligned} \frac{\hat{\rho }}{\sqrt{1 - \hat{\rho }^2}}&\equiv \frac{\left( \frac{\rho _{X_1 X_2} \sigma _{X_1}}{\sigma _{X_2}} - 1 \right) \sigma _{X_2}}{\sigma _{X_1} \sqrt{1 - \rho _{X_1 X_2}^2}} = \frac{\rho _{X_1 X_2} \sigma _{X_1} - \sigma _{X_2}}{\sigma _{X_1} \sqrt{1 - \rho _{X_1 X_2}^2}} \\ \Rightarrow \hat{\rho }&= \frac{\rho _{X_1 X_2} \sigma _{X_1} - \sigma _{X_2}}{\sqrt{\sigma _{X_1}^2 - 2 \rho _{X_1 X_2} \sigma _{X_1} \sigma _{X_2} + \sigma _{X_2}^2}} \\ \hat{\mu }_1&\equiv \sqrt{1 - \hat{\rho }^2} \Bigg ( \frac{\ln (H_2 / H_1) - \mu _{X_1} - \sigma _{X_1}^2 + \rho _{X_1 X_2} \sigma _{X_1} \frac{\mu _{X_2} + \sigma _{X_1 X_2}}{\sigma _{X_2}}}{\sigma _{X_1} \sqrt{1 - \rho _{X_1 X_2}^2}} \\&- \frac{\left( \frac{\rho _{X_1 X_2} \sigma _{X_1}}{\sigma _{X_2}} - 1 \right) (\mu _{X_2} + \sigma _{X_1 X_2}) }{\sigma _{X_1} \sqrt{1 - \rho _{X_1 X_2}^2}} \Bigg ) \\&= \frac{\ln (H_2 / H_1) - \mu _{X_1} + \mu _{X_2} - \sigma _{X_1}^2 + \sigma _{X_1 X_2}}{\sqrt{\sigma _{X_1}^2 - 2 \sigma _{X_1 X_2} + \sigma _{X_2}^2}} \end{aligned}$$

Now, we have

$$\begin{aligned}&- \int \limits _{-\infty }^\infty \Phi (d_1(x_2, 0)) n(x_2 | \mu _{X_2} + \sigma _{X_1 X_2}, \sigma _{X_2}^2) dx_2 \\&\quad =- \int \limits _{-\infty }^\infty \Phi \left( \frac{\hat{\mu }_1 - \hat{\rho } \hat{x}_1}{\sqrt{1 - \hat{\rho }^2}} \right) \phi (\hat{x}_1) d\hat{x}_1 = - \Phi ( \hat{\mu }_1 ) \end{aligned}$$

where we used \(n(x | \mu _{X_2} + \sigma _{X_1 X_2}, \sigma _{X_2}^2) = \frac{1}{\sigma _{X_2}} \phi (\frac{x - \mu _{X_2} - \sigma _{X_1 X_2}}{\sigma _{X_2}})\), changed the variables and (9).

The other integrals are calculated in similar manner.

$$\begin{aligned}&\int \limits _{D_1} (2 \pi )^{-1} | \Sigma _X |^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} ({{\varvec{x}}} - {\varvec{\mu }}_X - \Sigma _X {{\varvec{e}}}_2)^\top \Sigma _X^{-1} ({{\varvec{x}}} - {\varvec{\mu }}_X - \Sigma _X {{\varvec{e}}}_2) \right\} d{{\varvec{x}}} \\&= \int \limits _{-\infty }^\infty \Phi (d_2(x_2, Z)) n(x_2 | \mu _{X_2} + \sigma _{X_2}^2, \sigma _{X_2}^2) dx_2 - \Phi (\hat{\mu }_2) \\ \end{aligned}$$

where

$$\begin{aligned} d_2(x, z)&= \frac{\ln (H_2 \exp \{ x \} + z) - \ln H_1 - \mu _{X_1} - \rho _{X_1 X_2} \sigma _{X_1} \frac{x - \mu _{X_2}}{\sigma _{X_2}}}{\sigma _{X_1} \sqrt{1 - \rho _{X_1 X_2}^2}} \\ \hat{\mu }_2&= \frac{\ln (H_2 / H_1) - \mu _{X_1} + \mu _{X_2} - \sigma _{X_1 X_2} + \sigma _{X_2}^2}{\sqrt{\sigma _{X_1}^2 - 2 \sigma _{X_1 X_2} + \sigma _{X_2}^2}} \end{aligned}$$

The integral of the last term is

$$\begin{aligned}&\int \limits _{D_2} (2 \pi )^{-1} | \Sigma _X |^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} ({{\varvec{x}}} - {\varvec{\mu }}_X)^\top \Sigma _X^{-1} ({{\varvec{x}}} - {\varvec{\mu }}_X) \right\} d{{\varvec{x}}} \\&= \int \limits _{-\infty }^\infty \int \limits _{d(x_2, Z)}^{\infty } (2 \pi )^{-1} \left(\sigma _{X_1} \sigma _{X_2} \sqrt{1 - \rho _{X_1 X_2}^2} \right)^{-1} \exp \Bigg \{ - \frac{1}{2 \left(1 - \rho _{X_1 X_2}^2\right)} \\&\quad \times \Bigg ( \Bigg ( \frac{x_1 - \mu _{X_1}}{\sigma _{X_2}} \Bigg )^2 - 2 \rho _{X_1 X_2} \Bigg (\frac{x_1 - \mu _{X_1}}{\sigma _{X_1}} \Bigg ) \Bigg ( \frac{x_2 - \mu _{X_2}}{\sigma _{X_2}} \Bigg ) \\&\quad + \Bigg ( \frac{x_2 - \mu _{X_2}}{\sigma _{X_2}} \Bigg )^2 \Bigg ) \Bigg \} dx_2 dx_1 = \int \limits _{-\infty }^\infty \int \limits _{d(x_2, Z)}^{\infty } (2 \pi (1 - \rho _{X_1 X_2}^2) )^{-\frac{1}{2}} \sigma _{X_1}^{-1} \\&\quad \times \exp \Bigg \{ - \frac{\Big ( x_1 - \mu _{X_1} - \rho _{X_1 X_2} \sigma _{X_1} \frac{x_2 - \mu _{X_2}}{\sigma _{X_2}} \Big )^2}{2 \left(1 - \rho _{X_1 X_2}^2\right) \sigma _{X_1}^2} \Bigg \} dx_1 \\&\quad \times (2 \pi )^{-\frac{1}{2}} \sigma _{X_2}^{-1} \exp \Bigg \{ -\frac{1}{2} \Bigg ( \frac{x_2 - \mu _{X_2}}{\sigma _{X_2}} \Bigg )^2 \Bigg \} dx_2 \\&= \int \limits _{-\infty }^\infty \int \limits _{d_2(x_2, Z)}^{\infty } (2 \pi (1 - \rho _{X_1 X_2}^2) )^{-\frac{1}{2}} \sigma _{X_1}^{-1} \exp \left\{ - \frac{y^2}{2} \right\} \left(1 - \rho _{X_1 X_2}^2\right)^{\frac{1}{2}} \sigma _{X_1} dy \\&\quad \times (2 \pi )^{-\frac{1}{2}} \sigma _{X_2}^{-1} \exp \Bigg \{ -\frac{1}{2} \Bigg ( \frac{x_2 - \mu _{X_2}}{\sigma _{X_2}} \Bigg )^2 \Bigg \} dx_2 \\&= \int \limits _{-\infty }^\infty (1 - \Phi (d_2(x_2, Z))) n(x_2 | \mu _{X_2}, \sigma _{X_2}^2) dx_2 \\&= \int \limits _{-\infty }^\infty \Phi (-d_2(x_2, Z)) n(x_2 | \mu _{X_2}, \sigma _{X_2}^2) dx_2 \end{aligned}$$

Collecting all terms, we have the valuation formula.

$$\begin{aligned} S_e(t) =\hat{H}_1(t, T) - \hat{H}_2(t, T) + \hat{H}_3(t, T) Z \end{aligned}$$
(10)

where

$$\begin{aligned} \hat{H}_1(t, T)&= H_1 \exp \Bigg \{ -r(T-t) + \mu _{X_1}(t, T) + \frac{1}{2}\sigma _{X_1}^2(t, T) \Bigg \} \\&\times \Bigg ( \int \limits _{-\infty }^\infty \Phi (d_1(x_2, Z)) n( x_2 | \mu _{X_2}(t, T) + \sigma _{X_1 X_2}(t, T), \sigma _{X_2}^2(t, T)) dx_2 \\&- \Phi (\hat{\mu }_1(t, T)) \Bigg ) \\ \hat{H}_2(t, T)&= H_2 \exp \Bigg \{ -r(T-t) + \mu _{X_2}(t, T) + \frac{1}{2}\sigma _{X_2}^2(t, T) \Bigg \} \\&\times \Bigg ( \int \limits _{-\infty }^\infty \Phi (d_2(x_2, Z)) n( x_2 | \mu _{X_2}(t, T) + \sigma _{X_2}^2(t, T), \sigma _{X_2}^2(t, T)) dx_2 \\&- \Phi (\hat{\mu }_2(t, T)) \Bigg ) \\ \hat{H}_3(t, T)&= \exp (-r(T-t)) \int \limits _{-\infty }^\infty \Phi (-d_2(x_2, Z)) n( x_2 | \mu _{X_2}(t, T), \sigma _{X_2}^2(t, T) ) dx_2 \\ d_1(x, z)&= d_2(x, z) - \sigma _{X_1}(t, T) \sqrt{1 - \rho _{X_1 X_2}^2(t, T)} \\ d_2(x, z)&= \frac{\ln (H_2 \exp \{ x \} + z) - \ln H_1 - \mu _{X_1}(t, T)}{\sigma _{X_1}(t, T) \sqrt{1 - \rho _{X_1 X_2}^2(t, T)}} \\&- \frac{\rho _{X_1 X_2}(t, T) \sigma _{X_1}(t, T) \frac{x - \mu _{X_2}(t, T)}{\sigma _{X_2}(t, T)}}{\sigma _{X_1}(t, T) \sqrt{1 - \rho _{X_1 X_2}^2(t, T)}} \\ \hat{\mu }_1(t, T)&= \frac{\ln (H_2 / H_1) - \mu _{X_1}(t, T) + \mu _{X_2}(t, T) - \sigma _{X_1}^2(t, T) + \sigma _{X_1 X_2}(t, T)}{\sqrt{\sigma _{X_1}^2(t, T) - 2 \sigma _{X_1 X_2}(t, T) + \sigma _{X_2}^2(t, T)}} \\ \hat{\mu }_2(t, T)&= \hat{\mu }_1(t, T) + \sqrt{\sigma _{X_1}^2(t, T) - 2 \sigma _{X_1 X_2}(t, T) + \sigma _{X_2}^2(t, T)} \end{aligned}$$

1.3 Proof of Proposition 3.1

In this subsection, we derive the hedging strategy for emission allowance using futures commodities. First, we use the future commodity prices equation written in terms of spot commodity prices and derive the future price process using Ito’s lemma. This price process can be explicitly written in terms of futures price levels. Then, we calculate the expectation and covariance of stochastic terms of futures price using properties of stochastic calculus.

First,

$$\begin{aligned} G_i(t, T) = e^{\mu _{X_i}(t, T) + \frac{\sigma _{X_i}^2(t, T)}{2}} \end{aligned}$$

The partial derivatives are

$$\begin{aligned} \frac{\partial G_i(t, T)}{\partial S_i(t)}&= \frac{\left[e^{(T-t) {\varvec{\beta }}}\right]_{i,i}}{S_i(t)} G_i(t, T) \\ \frac{\partial G_i(t, T)}{\partial \delta _i(t)}&= \left[e^{(T-t) {\varvec{\beta }}}\right]_{i,n+i} G_i(t, T) \end{aligned}$$

where we denote \([A]_{i,j}\) as \((i, j)\) th entry of matrix \(A\).

Since the futures price \(G_i(t, T)\) is a function of \(S_i(t), \delta _i(t)\) and twice differentiable, we can use the Ito’s lemma and the dynamics of future price is

$$\begin{aligned} dG_i(t, T) = \sigma _{S_i} S_i(t) \frac{\partial G_i}{\partial S_i} dW_{S_i}(t) + \sigma _{\delta _i} \frac{\partial G_i}{\partial \delta _i} dW_{\delta _i}(t) \end{aligned}$$

where the drift term is 0 since \(G_i(t, T)\) is martingale under the risk-neutral probability.

Again, using Ito’s lemma we have,

$$\begin{aligned}&d \log G_i(t, T) = - \frac{1}{2} \Bigg \{ \sigma _{S_i}^2 \left[e^{(T-t) {\varvec{\beta }}}\right]_{i,i}^2 + 2 \sigma _{S_i \delta _i} \left[e^{(T-t) {\varvec{\beta }}}\right]_{i,i} \left[e^{(T-t) {\varvec{\beta }}}\right]_{i,n+i} \\&\quad +\, \sigma _{\delta _i}^2 \left[e^{(T-t) {\varvec{\beta }}}\right]_{i,n+i}^2 \Bigg \} dt + \sigma _{S_i} \left[e^{(T-t) {\varvec{\beta }}}\right]_{i,i} dW_{S_i}(t) + \sigma _{\delta _i} \left[e^{(T-t) {\varvec{\beta }}}\right]_{i,n+i} dW_{\delta _i}(t) \\ \end{aligned}$$

The futures price can be expressed as follows.

$$\begin{aligned} G_i(T_0, T_i) = G_i(t, T_i) e^{\hat{X}_{G_i}(t, T_0, T_i)}, t \le T_0 \le T_i \end{aligned}$$

where

$$\begin{aligned} \hat{X}_{G_i}(t, T_0, T_i)&\equiv \mu _{\hat{X}_{G_i}}(t, T_0, T_i) \\&+ \int \limits _t^{T_0} \sigma _{S_i} \left[e^{(T_i-t) {\varvec{\beta }}}\right]_{i,i} dW_{S_i}(u) + \int \limits _t^{T_0} \sigma _{\delta _i} \left[e^{(T_i-t) {\varvec{\beta }}}\right]_{i,n+i} dW_{\delta _i}(u) \\ \end{aligned}$$

The expectation value is

$$\begin{aligned}&\mu _{\hat{X}_{G_i}}(t, T_0, T_i) \equiv E_t[\hat{X}_{G_i}(t, T_0, T_i)] \\&\quad = - \frac{1}{2} \int \limits _t^{T_0} \sigma _{S_i}^2 \left[e^{(T_i-u) {\varvec{\beta }}}\right]_{i,i}^2 du - \int \limits _t^{T_0} \sigma _{S_i \delta _i} \left[e^{(T_i-u) {\varvec{\beta }}}\right]_{i,i} \left[e^{(T_i-u) {\varvec{\beta }}}\right]_{i,n+i} du \\&\qquad - \frac{1}{2} \int \limits _t^{T_0} \sigma _{\delta _i}^2 \left[e^{(T_i-u) {\varvec{\beta }}}\right]_{i,n+i}^2 du \end{aligned}$$

The covariance of \(\hat{X}_{G_i}(t, T_0, T_i)\) and \(\hat{X}_{G_j}(t, T_0, T_j)\) is

$$\begin{aligned} \sigma _{\hat{X}_{G_i} \hat{X}_{G_j}}(t, T_0, T_i, T_j)&\equiv {\text{ cov}}_t [\hat{X}_{G_i}(t, T_0, T_i), \hat{X}_{G_i}(t, T_0, T_j)] \\&= \int \limits _t^{T_0} \sigma _{S_i S_j} \left[e^{(T_i-u) {\varvec{\beta }}}\right]_{i,i} \left[e^{(T_j-u) {\varvec{\beta }}}\right]_{j,j} du \\&\quad + \int \limits _t^{T_0} \sigma _{S_i \delta _j} \left[e^{(T_i-u) {\varvec{\beta }}}\right]_{i,i} \left[e^{(T_j-u) {\varvec{\beta }}}\right]_{j,n+j} du \\&\quad + \int \limits _t^{T_0} \sigma _{S_j \delta _i} \left[e^{(T_j-u) {\varvec{\beta }}}\right]_{j,j} \left[e^{(T_i-u) {\varvec{\beta }}}\right]_{i,n+i} du \\&\quad + \int \limits _t^{T_0} \sigma _{\delta _i \delta _j} \left[e^{(T_i-u) {\varvec{\beta }}}\right]_{i,n+j} \left[e^{(T_j-u) {\varvec{\beta }}}\right]_{j,n+j} du. \end{aligned}$$

Now we derive the emission allowance futures price using commodity future prices.

$$\begin{aligned} G_e(t, T)&= E_t [ S_e(T) ] = E_t [ ((H_1 S_1(T) - H_2 S_2(T)) \wedge Z) \vee 0 ] \\&= E_t [ ((H_1 G_1(t, T) e^{\hat{X}_{G_1}(t, T, T)} - H_2 G_2(t, T) e^{\hat{X}_{G_2}(t, T, T)}) \wedge Z) \vee 0 ] \end{aligned}$$

With the same argument as in the proof of Proposition , we have

$$\begin{aligned} G_e(t, T) = \hat{\hat{H}}_1(t, T) G_1(t, T) - \hat{\hat{H}}_2(t, T) G_2(t, T) + \hat{\hat{H}}_3(t, T) Z \end{aligned}$$

where

$$\begin{aligned} \hat{\hat{H}}_1(t, T)&= H_1 \exp \Bigg \{ \mu _{\hat{X}_{G_1}}(t, T, T) + \frac{1}{2} \sigma _{\hat{X}_{G_1}}^2 (t, T, T, T) \Bigg \} \Bigg \{ \int \limits _{-\infty }^\infty \Phi ( d_{G_1}(x_2, Z) ) \\&\times n\left(x_2 | \mu _{\hat{X}_{G_2}}(t, T, T) + \sigma _{\hat{X}_{G_1} \hat{X}_{G_2}} (t, T, T, T), \sigma _{\hat{X}_{G_2}}^2 (t, T, T, T) \right) dx_2 \\&- \Phi ( \hat{\mu }_{G_1}(t, T) ) \Bigg \}\\ \hat{\hat{H}}_2(t, T)&= H_2 \exp \Bigg \{ \mu _{\hat{X}_{G_2}}(t, T, T) + \frac{1}{2} \sigma _{\hat{X}_{G_2}}^2 (t, T, T, T) \Bigg \} \Bigg \{ \int \limits _{-\infty }^\infty \Phi ( d_{G_2}(x_2, Z) ) \\&\times n\left(x_2 | \mu _{\hat{X}_{G_2}}(t, T, T) + \sigma _{\hat{X}_{G_2}}^2 (t, T, T, T), \sigma _{\hat{X}_{G_2}}^2 (t, T, T, T) \right) dx_2 \\&- \Phi ( \hat{\mu }_{G_2}(t, T) ) \Bigg \} \\ \hat{\hat{H}}_3(t, T)&= \int \limits _{-\infty }^\infty \Phi ( - d_{G_2}(x_2, Z) ) n\left(x_2 | \mu _{\hat{X}_{G_2}}(t, T, T), \sigma _{\hat{X}_{G_2}}^2 (t, T, T, T) \right) dx_2 \\ d_{G_1} (x, Z)&= d_{G_2} (x, Z) - \sigma _{\hat{X}_{G_1}} (t, T, T, T) \sqrt{1 - \rho _{\hat{X}_{G_1} \hat{X}_{G_2}}^2 (t, T, T, T)} \\ d_{G_2} (x, Z)&= \frac{\ln (H_2 G_2(t, T) \exp (x) + Z) - \ln (H_1 G_1(t, T)) - \mu _{\hat{X}_{G_1}} (t, T, T)}{\sigma _{\hat{X}_{G_1}} (t, T, T, T) \sqrt{1 - \rho _{\hat{X}_{G_1} \hat{X}_{G_2}}^2 (t, T, T, T)}} \\&- \frac{\rho _{\hat{X}_{G_1} \hat{X}_{G_2}} (t, T, T, T) \sigma _{\hat{X}_{G_1}} (t, T, T, T) \frac{x - \mu _{\hat{X}_{G_2}} (t, T, T)}{\sigma _{\hat{X}_{G_2} }(t, T, T, T)}}{\sigma _{\hat{X}_{G_1}} (t, T, T, T) \sqrt{1 - \rho _{\hat{X}_{G_1} \hat{X}_{G_2}}^2 (t, T, T, T)}} \\ \hat{\mu }_{G_1} (t, T)&= \frac{\ln (H_2 G_2(t, T) / H_1 G_1(t, T)) - \mu _{\hat{X}_{G_1}} (t, T, T) + \mu _{\hat{X}_{G_2}} (t, T, T)}{\sqrt{\sigma _{\hat{X}_{G_1}}^2 (t, T, T, T) - 2 \sigma _{\hat{X}_{G_1} \hat{X}_{G_2}} (t, T, T, T) + \sigma _{\hat{X}_{G_2}}^2 (t, T, T, T)}} \\&+ \frac{- \sigma _{\hat{X}_{G_1}}^2 (t, T, T, T) + \sigma _{\hat{X}_{G_1} \hat{X}_{G_2}} (t, T, T, T)}{\sqrt{\sigma _{\hat{X}_{G_1}}^2 (t, T, T, T) - 2 \sigma _{\hat{X}_{G_1} \hat{X}_{G_2}} (t, T, T, T) + \sigma _{\hat{X}_{G_2}}^2 (t, T, T, T)}} \\ \hat{\mu }_{G_2} (t, T)&= \hat{\mu }_{G_1} (t, T) \\&+ \sqrt{\sigma _{\hat{X}_{G_1}}^2 (t, T, T, T) - 2 \sigma _{\hat{X}_{G_1} \hat{X}_{G_2}} (t, T, T, T) + \sigma _{\hat{X}_{G_2}}^2 (t, T, T, T)} \end{aligned}$$

We now derive the hedging equation for emission allowance futures price using commodity futures prices. Using Ito’s lemma, the dynamics of emission allowance futures price \(dG_e(t, T)\) is

$$\begin{aligned} dG_e(t, T)&= G_1(t, T) d\hat{\hat{H}}_1 (t, T) + \hat{\hat{H}}_1 (t, T) dG_1(t, T) + d\hat{\hat{H}}_1(t, T) dG_1(t, T) \\&-\, G_2(t, T) d\hat{\hat{H}}_2 (t, T) - \hat{\hat{H}}_2 (t, T) dG_2(t, T) - d\hat{\hat{H}}_2 (t, T) dG_2(t, T) \\&+\, Z d\hat{\hat{H}}_3 (t, T) \end{aligned}$$

and \(d \hat{\hat{H}}_i(t, T)\) is

$$\begin{aligned}&d \hat{\hat{H}}_i (t, T) = \frac{\partial \hat{\hat{H}}_i (t, T)}{\partial t} dt + \sum _{j=1}^2 \frac{\partial \hat{\hat{H}}_i (t, T)}{\partial G_j(t, T)} dG_j(t, T) \\&\quad +\, \frac{1}{2} \frac{\partial ^2 \hat{\hat{H}}_i (t, T)}{\partial G_1(t, T) \partial G_1(t, T)} G_1(t, T)^2 \Bigg ( \sigma _{S_1 S_1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1}^2 \\&\quad -\, 2 \sigma _{S_1 \delta _1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3} + \sigma _{\delta _1 \delta _1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3}^2 \Bigg ) dt \\&\quad +\, \frac{1}{2} \frac{\partial ^2 \hat{\hat{H}}_i (t, T)}{\partial G_1(t, T) \partial G_2(t, T)} G_1(t, T) G_2(t, T) \Bigg ( \sigma _{S_1 S_2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2} \\&\quad -\, \sigma _{S_1 \delta _2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4} - \sigma _{S_2 \delta _1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3} \\&\quad +\, \sigma _{\delta _1 \delta _2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4} \Bigg ) dt +\, \frac{1}{2} \frac{\partial ^2 \hat{\hat{H}}_i (t, T)}{\partial G_2(t, T) \partial G_1(t, T)} G_1(t, T) G_2(t, T)\nonumber \\&\quad \times \Bigg ( \sigma _{S_2 S_1} -\, \sigma _{S_2 \delta _1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3} - \sigma _{S_1 \delta _2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4} \\&\quad +\, \sigma _{\delta _2 \delta _1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4} \Bigg ) dt +\, \frac{1}{2} \frac{\partial ^2 \hat{\hat{H}}_i (t, T)}{\partial G_2(t, T) \partial G_2(t, T)} G_2(t, T)^2 \\&\quad \times \,\Bigg ( \sigma _{S_2 S_2}-\, 2 \sigma _{S_2 \delta _2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4} + \sigma _{\delta _2 \delta _2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4}^2 \Bigg ) dt \end{aligned}$$

Substituting \(d \hat{\hat{H}}_i(t, T)\) to \(dG_e(t, T)\), we have

$$\begin{aligned} dG_e(t, T)&= \Bigg \{ \frac{\partial \hat{\hat{H}}_1(t, T)}{\partial t} G_1(t, T) - \frac{\partial \hat{\hat{H}}_2 (t, T)}{\partial t} G_2(t, T) + Z \frac{\partial \hat{\hat{H}}_3(t, T)}{\partial t} \\&+ \Bigg ( \frac{G_1(t, T)}{2} \frac{\partial ^2 \hat{\hat{H}}_1(t, T)}{\partial G_1(t, T) \partial G_1(t, T)} - \frac{G_2(t, T)}{2} \frac{\partial ^2 \hat{\hat{H}}_2(t, T)}{\partial G_1(t, T) \partial G_1(t, T)} \\&+ \frac{Z}{2} \frac{\partial ^2 \hat{\hat{H}}_3(t, T)}{\partial G_1(t, T) \partial G_1(t, T)} \Bigg ) G_1(t, T)^2 \Bigg ( \sigma _{S_1 S_1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1}^2 \\&- 2\sigma _{S_1 \delta _1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3}+ \sigma _{\delta _1 \delta _1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3}^2 \Bigg ) \\&+ \Bigg ( \frac{G_1(t, T)}{2} \frac{\partial ^2 \hat{\hat{H}}_1(t, T)}{\partial G_1(t, T) \partial G_2(t, T)} - \frac{G_2(t, T)}{2} \frac{\partial ^2 \hat{\hat{H}}_2(t, T)}{\partial G_1(t, T) \partial G_2(t, T)} \\&+ \frac{Z}{2} \frac{\partial ^2 \hat{\hat{H}}_3(t, T)}{\partial G_1(t, T) \partial G_2(t, T)} \Bigg ) G_1(t, T) G_2(t, T) \Bigg ( \sigma _{S_1 S_2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2} \\&- \sigma _{S_1 \delta _2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4} - \sigma _{S_2 \delta _1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3} \\&+\sigma _{\delta _1 \delta _2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4} \Bigg ) \\&+\Bigg ( \frac{G_1(t, T)}{2} \frac{\partial ^2 \hat{\hat{H}}_1(t, T)}{\partial G_2(t, T) \partial G_1(t, T)} - \frac{G_2(t, T)}{2} \frac{\partial ^2 \hat{\hat{H}}_2(t, T)}{\partial G_2(t, T) \partial G_1(t, T)} \\&+\frac{Z}{2} \frac{\partial ^2 \hat{\hat{H}}_3(t, T)}{\partial G_2(t, T) \partial G_1(t, T)} \Bigg ) G_1(t, T) G_2(t, T) \Bigg ( \sigma _{S_2 S_1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2} \\&-\sigma _{S_2 \delta _1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3} - \sigma _{S_1 \delta _2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4} \\&+\sigma _{\delta _2 \delta _1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4} \Bigg ) \\&+ \Bigg ( \frac{G_1(t, T)}{2} \frac{\partial ^2 \hat{\hat{H}}_1(t, T)}{\partial G_2(t, T) \partial G_2(t, T)} - \frac{G_2(t, T)}{2} \frac{\partial ^2 \hat{\hat{H}}_2(t, T)}{\partial G_2(t, T) \partial G_2(t, T)} \\&+ \frac{Z}{2} \frac{\partial ^2 \hat{\hat{H}}_3(t, T)}{\partial G_2(t, T) \partial G_2(t, T)} \Bigg ) G_2(t, T)^2 \Bigg ( \sigma _{S_2 S_2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2}^2\\&- 2\sigma _{S_2 \delta _2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4} + \sigma _{\delta _2 \delta _2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4}^2 \Bigg ) \\&+ \frac{\partial \hat{\hat{H}}_1 (t, T)}{\partial G_1(t, T)} G_1(t, T)^2 \Bigg ( \sigma _{S_1}^2 \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1}^2 - 2 \sigma _{S_1 \delta _1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3} \\&+ \sigma _{\delta _1}^2 \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3}^2 \Bigg ) \\&+ \frac{\partial \hat{\hat{H}}_1 (t, T)}{\partial G_2(t, T)} G_1(t, T) G_2(t, T) \Bigg ( \sigma _{S_1 S_2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2} \\&- \sigma _{S_1 \delta _2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4} - \sigma _{S_2 \delta _1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3} \\&+ \sigma _{\delta _1 \delta _2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4} \Bigg ) - \frac{\partial \hat{\hat{H}}_2 (t, T)}{\partial G_2(t, T)} G_2(t, T)\\&\qquad \times \Bigg ( \sigma _{S_2}^2 \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2}^2 - 2 \sigma _{S_2 \delta _2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4} + \sigma _{\delta _2}^2 \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4}^2 \Bigg ) \\&- \frac{\partial \hat{\hat{H}}_2 (t, T)}{\partial G_1(t, T)} G_1(t, T) G_2(t, T) \Bigg ( \sigma _{S_1 S_2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2} \\&- \sigma _{S_1 \delta _2} (T-t) \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4} - \sigma _{S_2 \delta _1} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3} \\&+ \sigma _{\delta _1 \delta _2} \left[e^{(T-t) {\varvec{\beta }}}\right]_{1,3} \left[e^{(T-t) {\varvec{\beta }}}\right]_{2,4} \Bigg ) \Bigg \} dt \\&+ \sum _{j=1}^2 \frac{\partial \hat{\hat{H}}_1 (t, T)}{\partial G_j(t, T)} G_1(t, T) dG_j(t, T) + \hat{\hat{H}}_1 (t, T) dG_1(t, T) \\&- \sum _{j=1}^2 \frac{\partial \hat{\hat{H}}_2 (t, T)}{\partial G_j(t, T)} G_2(t, T) dG_j(t, T) - \hat{\hat{H}}_2 (t, T) dG_2(t, T) \\&+ \sum _{j=1}^2 \frac{\partial \hat{\hat{H}}_3 (t, T)}{\partial G_j(t, T)} Z dG_j(t, T) \end{aligned}$$

Here after, we omit the time parameters. The partial derivatives are calculated as follows.

$$\begin{aligned} \frac{\partial \hat{\hat{H}}_i }{\partial G_j}&= H_i \exp \Bigg \{ \mu _{\hat{X}_{G_i}} + \frac{1}{2} \sigma _{\hat{X}_{G_i}}^2 \Bigg \} \\&\times \Bigg \{ \int \limits _{-\infty }^\infty \phi ( d_{G_i}(x_2, Z) ) \frac{\partial d_{G_i} (x_2, Z)}{\partial G_j} n \left(x_2 | \mu _{\hat{X}_{G_2}} + \sigma _{\hat{X}_{G_2} \hat{X}_{G_i}} , \sigma _{\hat{X}_{G_2}}^2 \right) dx_2 \\&- \phi ( \hat{\mu }_{G_i} ) \frac{\partial \hat{\mu }_{G_i} }{\partial G_j} \Bigg \}, \quad i, j = 1, 2\\ \frac{\partial ^2 \hat{\hat{H}}_i }{\partial G_j \partial G_k}&= H_i \exp \Bigg \{ \mu _{\hat{X}_{G_i}} + \frac{1}{2} \sigma _{\hat{X}_{G_i}}^2 \Bigg \} \\&\times \Bigg \{ \int \limits _{-\infty }^\infty \phi ^{\prime } (d_{G_i} (x_2, Z)) \frac{\partial d_{G_i} (x_2, Z)}{\partial G_k} \frac{\partial d_{G_i} (x_2, Z)}{\partial G_j} \\&\times n\left(x_2 | \mu _{\hat{X}_{G_2}} + \sigma _{\hat{X}_{G_2} \hat{X}_{G_i}} , \sigma _{\hat{X}_{G_2}}^2 \right) dx_2 \\&+ \int \limits _{-\infty }^\infty \phi ( d_{G_i} (x_2, Z) ) \frac{\partial ^2 d_{G_i} (x_2, Z)}{\partial G_j \partial G_k} n\left(x_2 | \mu _{\hat{X}_{G_2}} + \sigma _{\hat{X}_{G_2} \hat{X}_{G_i}} , \sigma _{\hat{X}_{G_2}}^2 \right) dx_2 \\&-\, \phi ^{\prime } ( \hat{\mu }_{G_i} ) \frac{\partial \hat{\mu }_{G_i} }{\partial G_k} \frac{\partial \hat{\mu }_{G_i} }{\partial G_j} - \phi ( \hat{\mu }_{G_i} ) \frac{\partial ^2 \hat{\mu }_{G_i} }{\partial G_j \partial G_k} \Bigg \} \\ \frac{\partial \hat{\hat{H}}_i }{\partial t}&= H_i \Bigg ( \frac{\partial \mu _{\hat{X}_{G_i}} }{\partial t} + \frac{1}{2} \frac{\partial \sigma _{\hat{X}_{G_i}}^2 }{\partial t} \Bigg ) \exp \Bigg \{ \mu _{\hat{X}_{G_i}} + \frac{1}{2} \sigma _{\hat{X}_{G_i}}^2 \Bigg \} \\&\times \Bigg \{ \int \limits _{-\infty }^\infty \Phi (d_{G_i}(x_2, Z)) n\left(x_2 | \mu _{\hat{X}_{G_2}} + \sigma _{\hat{X}_{G_2} \hat{X}_{G_i}} , \sigma _{\hat{X}_{G_2}}^2 \right) dx_2 - \Phi ( \hat{\mu }_{G_i} ) \Bigg \} \\&+ H_i \exp \Bigg \{ \mu _{\hat{X}_{G_i}} + \frac{1}{2} \sigma _{\hat{X}_{G_i}}^2 \Bigg \} \\&\times \Bigg \{ \int \limits _{-\infty }^\infty \phi ( d_{G_i} (x_2, Z) ) \frac{\partial d_{G_i} (x_2, Z)}{\partial t} n\left(x_2 | \mu _{\hat{X}_{G_2}} + \sigma _{\hat{X}_{G_2} \hat{X}_{G_i}}, \sigma _{\hat{X}_{G_2}}^2 \right) dx_2 \\&+ \int \limits _{-\infty }^\infty \Phi (d_{G_i} (x_2, Z)) \frac{\partial n\left(x_2 | \mu _{\hat{X}_{G_2}} + \sigma _{\hat{X}_{G_2} \hat{X}_{G_i}} , \sigma _{\hat{X}_{G_2}}^2 \right)}{\partial t} dx_2 \\&- \phi (\hat{\mu }_{G_i} ) \frac{\partial \hat{\mu }_{G_i} }{\partial t} \Bigg \},\quad i = 1, 2 \end{aligned}$$
$$\begin{aligned} \frac{\partial \hat{\hat{H}}_3 }{\partial t}&= - \int \limits _{-\infty }^\infty \phi ( -d_{G_2} (x_2, Z) ) \frac{\partial d_{G_2} (x_2, Z)}{\partial t} n\left(x_2 | \mu _{\hat{X}_{G_2}} , \sigma _{\hat{X}_{G_2}}^2 \right) dx_2 \\&+ \int \limits _{-\infty }^\infty \Phi ( -d_{G_2} (x_2, Z)) \frac{\partial n\left(x_2 | \mu _{\hat{X}_{G_2}} , \sigma _{\hat{X}_{G_2}}^2 \right)}{\partial t} dx_2 \\ \frac{\partial \hat{\hat{H}}_3 }{\partial G_j}&= - \int \limits _{-\infty }^\infty \phi ( - d_{G_2} (x_2, Z) ) \frac{\partial d_{G_2} (x_2, Z)}{\partial G_j} n\left(x_2 | \mu _{\hat{X}_{G_2}} , \sigma _{\hat{X}_{G_2}}^2 \right) dx_2 \\ \frac{\partial \hat{\hat{H}}_3 }{\partial G_j \partial G_k}&= \int \limits _{-\infty }^\infty \phi ^{\prime } (- d_{G_2}(x_2, Z) ) \frac{\partial d_{G_2} (x_2, Z)}{\partial G_k} \frac{\partial d_{G_2} (x_2, Z)}{\partial G_j} n\left(x_2 | \mu _{\hat{X}_{G_2}} , \sigma _{\hat{X}_{G_2}}^2 \right) dx_2 \\&- \int \limits _{-\infty }^\infty \phi ( - d_{G_2} (x_2, Z) ) \frac{\partial ^2 d_{G_2} (x_2, Z)}{\partial G_j \partial G_k} n\left(x_2 | \mu _{\hat{X}_{G_2}} , \sigma _{\hat{X}_{G_2}}^2 \right) dx_2 \end{aligned}$$

where

$$\begin{aligned} \frac{\partial \mu _{\hat{X}_{G_i}} }{\partial t}&= \frac{1}{2} \sigma _{S_i}^2 \left[e^{(T_i-t) {\varvec{\beta }}}\right]_{i,i}^2 - \sigma _{S_i \delta _i} \left[e^{(T_i-t) {\varvec{\beta }}}\right]_{i,i} \left[e^{(T_i-t) {\varvec{\beta }}}\right]_{i,n+i} \\&+ \frac{1}{2} \sigma _{\delta _i}^2 \left[e^{(T_i-t) {\varvec{\beta }}}\right]_{i,n+i}^2 \\ \frac{\partial \sigma _{\hat{X}_{G_i}} }{\partial t}&= - \sigma _{S_i S_j} [e^{(T_i-t) {\varvec{\beta }}}]_{i,i} \left[e^{(T_j-t) {\varvec{\beta }}}\right]_{j,j} - \sigma _{S_i \delta _j} \left[e^{(T_i-t) {\varvec{\beta }}}\right]_{i,i} \left[e^{(T_j-t) {\varvec{\beta }}}\right]_{j,n+j} \\&- \sigma _{S_j \delta _i} \left[e^{(T_i-t) {\varvec{\beta }}}\right]_{i,n+i} \left[e^{(T_j-t) {\varvec{\beta }}}\right]_{j,j} - \sigma _{\delta _i \delta _j} [e^{(T_i-t) {\varvec{\beta }}}]_{i,n+i} \left[e^{(T_j-t) {\varvec{\beta }}}\right]_{j,n+j} \end{aligned}$$
$$\begin{aligned}&\frac{\partial \rho _{\hat{X}_{G_i} \hat{X}_{G_j}} }{\partial t} = \frac{\frac{\partial \sigma _{\hat{X}_{G_i} \hat{X}_{G_j}} }{\partial t} - \rho _{\hat{X}_{G_i} \hat{X}_{G_j}} \Bigg ( \frac{\partial \sigma _{\hat{X}_{G_i}} }{\partial t} \sigma _{\hat{X}_{G_j}} + \sigma _{\hat{X}_{G_i}} \frac{\partial \sigma _{\hat{X}_{G_j}}}{\partial t} \Bigg ) }{\sigma _{\hat{X}_{G_i}} \sigma _{\hat{X}_{G_j}}}, \quad i, j = 1, 2 \\&\frac{\partial \sigma _{\hat{X}_{G_i}} }{\partial t} = \frac{1}{2} \sigma _{\hat{X}_{G_i}}^{-1} \frac{\partial \sigma _{\hat{X}_{G_i}}^2 }{\partial t}, \quad i = 1, 2 \\&\frac{\partial d_{G_2} (x_2, Z)}{\partial t} = \left(\sigma _{\hat{X}_{G_1}}^2 \left(1 - \rho _{\hat{X}_{G_1} \hat{X}_{G_2}}^2 \right)\right)^{-1} \\&\quad \times \Bigg \{ \Bigg ( - \frac{\partial \mu _{\hat{X}_{G_1}} }{\partial t} + \frac{- \frac{\partial \rho _{\hat{X}_{G_1} \hat{X}_{G_2}} }{\partial t} \sigma _{\hat{X}_{G_1}} \sigma _{\hat{X}_{G_2}} \left(x_2 - \mu _{\hat{X}_{G_2}} \right)}{\sigma _{\hat{X}_{G_2}}^2 } \\&\quad - \frac{\frac{\partial \sigma _{\hat{X}_{G_1}} }{\partial t} \rho _{\hat{X}_{G_1} \hat{X}_{G_2}} \sigma _{\hat{X}_{G_2}} \left(x_2 - \mu _{\hat{X}_{G_2}}\right)}{\sigma _{\hat{X}_{G_2}}^2 } \\&\quad + \frac{\sigma _{\hat{X}_{G_1} \hat{X}_{G_2}} \frac{\partial \mu _{\hat{X}_{G_2}} }{\partial t}}{\sigma _{\hat{X}_{G_2}}^2 } + \rho _{\hat{X}_{G_1} \hat{X}_{G_2}} \sigma _{\hat{X}_{G_1}} \left(x_2 - \mu _{\hat{X}_{G_2}}\right) \frac{\frac{\partial \sigma _{\hat{X}_{G_2}}}{\partial t}}{\sigma _{\hat{X}_{G_2}}^2} \Bigg ) \\&\quad \times \sqrt{ \sigma _{\hat{X}_{G_1}}^2 \left(1 - \rho _{\hat{X}_{G_1} \hat{X}_{G_2}}^2 \right) } \\&\quad - \Bigg ( \ln (H_2 G_2 e^{x_2} + Z) - \ln ( H_1 G_1 ) - \mu _{\hat{X}_{G_1}} - \rho _{\hat{X}_{G_1} \hat{X}_{G_2}} \sigma _{\hat{X}_{G_1}} \frac{x_2 - \mu _{\hat{X}_{G_2}} }{\sigma _{\hat{X}_{G_2}} } \Bigg ) \\&\quad \times \Bigg ( \frac{\partial \sigma _{\hat{X}_{G_1}}}{\partial t} \sqrt{1 - \rho _{\hat{X}_{G_1} \hat{X}_{G_2}}^2 } - \rho _{\hat{X}_{G_1} \hat{X}_{G_2}} \sigma _{\hat{X}_{G_1}} \left(1 - \rho _{\hat{X}_{G_1} \hat{X}_{G_2}}^2\right)^{-\frac{1}{2}} \frac{\partial \rho _{\hat{X}_{G_1} \hat{X}_{G_2}} }{\partial t} \Bigg ) \Bigg \} \end{aligned}$$
$$\begin{aligned} \frac{\partial d_{G_1} (x_2, Z)}{\partial t}&= \frac{\partial d_{G_2}(x_2, Z)}{\partial t} - \frac{\partial \sigma _{\hat{X}_{G_1}} }{\partial t} \sqrt{1 - \rho _{\hat{X}_{G_1} \hat{X}_{G_2}}^2 } \\&+ \rho _{\hat{X}_{G_1} \hat{X}_{G_2}} \sigma _{\hat{X}_{G_1}} \left(1 - \rho _{\hat{X}_{G_1} \hat{X}_{G_2}}^2 \right)^{-\frac{1}{2}} \frac{\partial \rho _{\hat{X}_{G_1} \hat{X}_{G_2}} }{\partial t} \\ \frac{\partial \hat{\mu }_{G_1} }{\partial t}&= \left(\sigma _{\hat{X}_{G_1}}^2 - 2 \sigma _{\hat{X}_{G_1} \hat{X}_{G_2}} + \sigma _{\hat{X}_{G_2}}^2 \right)^{-1} \\&\times \Bigg \{ \Bigg ( - \frac{\partial \mu _{\hat{X}_{G_1}} }{\partial t} + \frac{\partial \mu _{\hat{X}_{G_2}} }{\partial t} - \frac{\partial \sigma _{\hat{X}_{G_1}}^2 }{\partial t} + \frac{\partial \sigma _{\hat{X}_{G_1} \hat{X}_{G_2}}}{\partial t} \Bigg ) \\&\times \sqrt{ \sigma _{\hat{X}_{G_1}}^2 - 2 \sigma _{\hat{X}_{G_1} \hat{X}_{G_2}} + \sigma _{\hat{X}_{G_2}}^2 } \\&- \left( \ln ( H_2 G_2 / H_1 G_1 ) - \mu _{\hat{X}_{G_1}} + \mu _{\hat{X}_{G_2}} - \sigma _{\hat{X}_{G_1}}^2 + \sigma _{\hat{X}_{G_1} \hat{X}_{G_2}} \right) \\&\times \frac{1}{2} \left(\sigma _{\hat{X}_{G_1}}^2 - 2 \sigma _{\hat{X}_{G_1} \hat{X}_{G_2}} + \sigma _{\hat{X}_{G_2}}^2 \right)^{-\frac{1}{2}} \\&\times \Bigg ( \frac{\partial \sigma _{\hat{X}_{G_1}}^2 }{\partial t} - 2 \frac{\partial \sigma _{\hat{X}_{G_1} \hat{X}_{G_2}} }{\partial t} + \frac{\partial \sigma _{\hat{X}_{G_2}}^2 }{\partial t} \Bigg ) \Bigg \} \\ \frac{\partial \hat{\mu }_{G_2} }{\partial t}&= (2 \pi )^{-\frac{1}{2}} \exp \Bigg \{ - \frac{1}{2} \Bigg ( \frac{x_2 - \mu _{\hat{X}_{G_2}} - \sigma _{\hat{X}_{G_2} \hat{X}_{G_i}} }{\sigma _{\hat{X}_{G_2}} } \Bigg )^2 \Bigg \} \sigma _{\hat{X}_{G_2}}^{-1} \\&\times \Bigg ( \frac{x_2 - \mu _{\hat{X}_{G_2}} - \sigma _{\hat{X}_{G_2} \hat{X}_{G_i}} }{\sigma _{\hat{X}_{G_2}} } \Bigg ) \\&\times \frac{\Bigg ( \frac{\partial \mu _{\hat{X}_{G_2}} }{\partial t} + \frac{\partial \sigma _{\hat{X}_{G_2} \hat{X}_{G_i}} }{\partial t} \Bigg ) \sigma _{\hat{X}_{G_2}} + \left(x_2 - \mu _{\hat{X}_{G_2}} - \sigma _{\hat{X}_{G_2} \hat{X}_{G_i}}\right) \frac{\partial \sigma _{\hat{X}_{G_2}} }{\partial t}}{\sigma _{\hat{X}_{G_2}}^2 } \\&- (2 \pi )^{-\frac{1}{2}} \exp \Bigg \{ -\frac{1}{2} \Bigg ( \frac{x_2 - \mu _{\hat{X}_{G_2}} - \sigma _{\hat{X}_{G_2} \hat{X}_{G_i}} }{\sigma _{\hat{X}_{G_2}} } \Bigg )^2 \Bigg \} \frac{\frac{\partial \sigma _{\hat{X}_{G_2}} }{\partial t}}{\sigma _{\hat{X}_{G_2}}^2 } , \quad i = 1, 2 \end{aligned}$$
$$\begin{aligned} \frac{\partial d_{G_i}(x_2, Z)}{\partial G_1}&= - \left( \sigma _{\hat{X}_{G_1}} \sqrt{1 - \rho _{\hat{X}_{G_1} \hat{X}_{G_2}}^2 } \right)^{-1} G_1^{-1}, \quad i = 1, 2 \\ \frac{\partial d_{G_i}(x_2, Z)}{\partial G_2}&= \left( \sigma _{\hat{X}_{G_1}} \sqrt{1 - \rho _{\hat{X}_{G_1} \hat{X}_{G_2}}^2 } \right)^{-1} \frac{H_2 e^{x_2}}{H_2 G_2 e^{x_2} + Z}, \quad i = 1, 2 \\ \frac{\partial \hat{\mu }_{G_i} }{\partial G_1}&= - \left(\sigma _{\hat{X}_{G_1}}^2 - 2 \sigma _{\hat{X}_{G_1} \hat{X}_{G_2}} + \sigma _{\hat{X}_{G_2}}^2 \right)^{-\frac{1}{2}} G_1^{-1},\quad i = 1, 2 \\ \frac{\partial \hat{\mu }_{G_i} }{\partial G_2}&= \left(\sigma _{\hat{X}_{G_1}}^2 - 2 \sigma _{\hat{X}_{G_1} \hat{X}_{G_2}} + \sigma _{\hat{X}_{G_2}}^2 \right)^{-\frac{1}{2}} G_2^{-1},\quad i = 1, 2 \\ \phi ^{\prime } (x)&= \frac{-x}{\sqrt{2\pi }} e^{-\frac{1}{2} x^2} \\ \frac{\partial ^2 d_{G_i} (x_2, Z)}{\partial G_1^2}&= \left(\sigma _{\hat{X}_{G_1}} \sqrt{1 - \rho _{\hat{X}_{G_1} \hat{X}_{G_2}}^2 }\right)^{-1} G_1^{-2},\quad i = 1, 2 \\ \frac{\partial ^2 d_{G_i} (x_2, Z)}{\partial G_2^2}&= - \left(\sigma _{\hat{X}_{G_1}} \sqrt{1 - \rho _{\hat{X}_{G_1} \hat{X}_{G_2}}^2 }\right)^{-1} \Bigg (\frac{H_2 e^{x_2}}{H_2 G_2 e^{x_2} + Z} \Bigg )^2,\quad i = 1, 2 \\ \frac{\partial ^2 d_{G_i} (x_2, Z)}{\partial G_1 \partial G_2}&= 0,\quad i = 1, 2 \\ \frac{\partial ^2 \hat{\mu }_{G_i} }{\partial G_1^2}&= \left( \sigma _{\hat{X}_{G_1}}^2 - 2 \sigma _{\hat{X}_{G_1} \hat{X}_{G_2}} + \sigma _{\hat{X}_{G_2}}^2 \right)^{-\frac{1}{2}} G_1^{-2},\quad i = 1, 2 \\ \frac{\partial ^2 \hat{\mu }_{G_i} }{\partial G_2^2}&= - \left( \sigma _{\hat{X}_{G_1}}^2 - 2 \sigma _{\hat{X}_{G_1} \hat{X}_{G_2}} + \sigma _{\hat{X}_{G_2}}^2 \right)^{-\frac{1}{2}} G_2^{-2},\quad i = 1, 2 \\ \frac{\partial ^2 \hat{\mu }_{G_i} }{\partial G_1 \partial G_2}&= 0,\quad i = 1, 2 \\ \frac{\partial n\left(x_2 | \mu _{\hat{X}_{G_2}} , \sigma _{\hat{X}_{G_2}}^2 \right)}{\partial t}&= (2 \pi )^{-\frac{1}{2}} \exp \Bigg \{ - \frac{1}{2} \Bigg ( \frac{x_2 - \mu _{\hat{X}_{G_2}} }{\sigma _{\hat{X}_{G_2}} } \Bigg )^2 \Bigg \} \sigma _{\hat{X}_{G_2}}^{-1} \\&\times \Bigg ( \frac{x_2 - \mu _{\hat{X}_{G_2}} }{\sigma _{\hat{X}_{G_2}} } \Bigg ) \frac{\frac{\partial \mu _{\hat{X}_{G_2}} }{\partial t} \sigma _{\hat{X}_{G_2}} + \left(x_2 - \mu _{\hat{X}_{G_2}} \right) \frac{\partial \sigma _{\hat{X}_{G_2}} }{\partial t}}{\sigma _{\hat{X}_{G_2}}^2} \\&- (2 \pi )^{-\frac{1}{2}} \exp \Bigg \{ - \frac{1}{2} \Bigg ( \frac{x_2 - \mu _{\hat{X}_{G_2}}}{\sigma _{\hat{X}_{G_2}} } \Bigg )^2 \Bigg \} \frac{\frac{\partial \sigma _{\hat{X}_{G_2}} }{\partial t}}{\sigma _{\hat{X}_{G_2}}^2 }. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, K., Ohashi, K. Emission Allowance as a Derivative on Commodity-Spread. Asia-Pac Financ Markets 20, 183–217 (2013). https://doi.org/10.1007/s10690-013-9164-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10690-013-9164-5

Keywords

Navigation