Skip to main content

Advertisement

Log in

RAD51 135G>C and TP53 Arg72Pro polymorphisms and susceptibility to breast cancer in Serbian women

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Breast cancer is a complex disease with both genetic and environmental factors involved in its etiology. An important role of polymorphisms in genes involved in DNA repair has been reported related to breast cancer risk. We conducted a case–control study in order to investigate the association of RAD51 135G>C and TP53 Arg72Pro polymorphisms with breast cancer in Serbian women.48 BRCA negative women with breast cancer and family history of breast/ovarian cancer (hereditary group), 107 women with breast cancer but without family history of the disease (sporadic group) and 114 healthy women without a history of the disease (control group) were included. Restriction fragment length polymorphism was used for genotyping. Genotype and allelic frequencies, the odds ratio (OR) and the 95 % confidence interval (CI) were calculated as an estimate of relative risk. The Hardy–Weinberg equilibrium was tested using χ2 test. Significance was considered for p < 0.05. RAD51 135G>C showed statistically significant association of CC genotype and increased breast cancer risk (OR 10.28, 95 % CI 1.12–94.5) in hereditary group of patients compared to the control group. Regarding the TP53 Arg72Pro, we showed statistical significance for ProPro + ProArg comparing to ArgArg (OR 2.34, 95 %, CI 1.17–4.70) in hereditary compared to sporadic group. RAD51 135G>C contributes to hereditary breast cancer in Serbian population, with CC genotype as a risk factor. We also found that carriers of Pro allele of TP53 codon 72 is related to hereditary cancer comparing to sporadic one, which indicates it as a potential risk factor for hereditary form of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Van der Groep P, Van der Wall E, Van Diest PJ (2011) Pathology of hereditary breast cancer. Cell Oncol 34:71–88

    Article  Google Scholar 

  2. Margolin S, Eiberg H, Lindblom A, Bisgaard ML (2007) CHEK2 1100delC is prevalent in Swedish early onset familial breast cancer. BMC Cancer 7:163

    Article  PubMed Central  PubMed  Google Scholar 

  3. Byrnes GB, Southey MC, Hopper JL (2008) Are the so-called low penetrance breast cancer genes, ATM, BRIP1, PALB2 and CHEK2, high risk for women with strong family histories? Breast Cancer Res 10:208

    Article  PubMed Central  PubMed  Google Scholar 

  4. Fletcher O, Johnson N, Santos Silva I, Kilpivaara O, Aittomaki K, Blomqvist C et al (2009) Family history, genetic testing, and clinical risk prediction: pooled analysis of CHEK2*1100delC in 1,828 bilateral breast cancers and 7,030 controls. Cancer Epidemiol Biomarkers Prev 18(1):230–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Dapic V, Carvalho MA, Monteiro A (2005) Breast cancer susceptibility and the DNA damage response. Cancer Control J 12(2):127–136

    Google Scholar 

  6. Costa S, Pinto D, Pereira D, Rodrigues H, Cameselle-Teijeiro J, Medeiros R et al (2007) DNA repair polymorphisms might contribute differentially on familial and sporadic breast cancer susceptibility: a study on a Portuguese population. Breast Cancer Res Treat 103:209–217

    Article  CAS  PubMed  Google Scholar 

  7. Kato M, Yano K, Matsuo F, Saito H, Katagiri T, Kurumizaka F et al (2000) Identification of Rad51 alteration in patients with bilateral breast cancer. J Hum Genet 45:133–137

    Article  CAS  PubMed  Google Scholar 

  8. Wang W, Spurdle A, Kolachana P, Bove B, Modan B, Ebbers S et al (2001) A single nucleotide polymorphism in the 5′untranslated region of RAD51 and risk of cancer among BRCA1/2 mutation carriers. Cancer Epidemiol Biomark Prev 10:955–960

    CAS  Google Scholar 

  9. Vousden K, Prives C (2009) Blinded by the Light: the growing complexity of p53. Cell 137:413–431

    Article  CAS  PubMed  Google Scholar 

  10. Gasco M, Shami S, Crook T (2002) The p53 pathway in breast cancer. Breast Cancer Res 4:70–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Whibley C, Pharoah P, Hollstein M (2009) p53 polymorphisms: cancer implications. Nat Rev 9:95–110

    Article  CAS  Google Scholar 

  12. Bohgaki T, Bohgaki M, Hakem R (2010) DNA double-strand break signaling and human disorders. Genome Integr 1:15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Richardson C (2005) RAD51, genomic stability, and tumorigenesis. Cancer Lett 218:127–139

    Article  CAS  PubMed  Google Scholar 

  14. Lose F, Lovelock P, Chenevix-Trench G, Mann GJ, Pupo GM, Spurdle AB et al (2006) Variation in the RAD51 gene and familial breast cancer. Breast Cancer Res 8:R26

    Article  PubMed Central  PubMed  Google Scholar 

  15. Schmutte C, Tombline G, Rhiem K, Sadoff MM, Schmutzler R, von Deimling A et al (1999) Characterization of the human Rad51 genomic locus and examination of tumors with 15q14–15 loss of heterozygosity (LOH). Cancer Res 59:4564–4569

    CAS  PubMed  Google Scholar 

  16. Tsuzuki T, Fujii Y, Sakumi K, Tominaga Y, Nakao K, Sekiguchi M et al (1996) Targeted disruption of the Rad5 l gene leads to lethality in embryonic mice. Proc Natl Acad Sci USA 93:6236–6240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Raderschall E, Stout K, Freier S, Suckow V, Schweiger S, Haaf T (2002) Elevated levels of Rad51 recombination protein in tumor cells. Cancer Res 62:219–225

    CAS  PubMed  Google Scholar 

  18. Gao LB, Pan XM, Li LJ, Liang WB, Zhu Y, Zhang LS et al (2011) RAD51 135G/C polymorphism and breast cancer risk: a meta-analysis from 21 studies. Breast Cancer Res Treat 125:827–835

    Article  CAS  PubMed  Google Scholar 

  19. Sun H, Bai J, Chen F, Jin Y, Yu Y, Jin L, Fu S (2011) RAD51 G135C polymorphism is associated with breast cancer susceptibility: a meta-analysis involving 22,399 subjects. Breast Cancer Res Treat 125:157–161

    Article  PubMed  Google Scholar 

  20. Jara L, Acevedo M, Blanco R, Castro V, Bravo T, Gomez F et al (2007) RAD51 135G>C polymorphism and risk of familial breast cancer in a South American population. Cancer Genet Cytogenet 178:65–69

    Article  CAS  PubMed  Google Scholar 

  21. Antoniou A, Sinilnikova O, Simard J, Leone M, Dumon M, Neuhausen S (2007) RAD51 135G>C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 81:1186–1200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Teodoro J, Evans S, Green M (2007) Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med 85:1175–1186

    Article  CAS  PubMed  Google Scholar 

  23. Yoon D, Wang Y, Stapleford K, Wiesmuller L, Chen J (2004) p53 inhibits strand exchange and replication fork regression promoted by human Rad51. J Mol Biol 336:639–654

    Article  CAS  PubMed  Google Scholar 

  24. Al-Qasem A, Toulimat M, Tulbah A, Elkum N, Al-Tweigeri T, Aboussekhra A (2012) The p53 codon 72 polymorphism is associated with risk and early onset of breast cancer among Saudi women. Oncol Lett 3:875–878

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Proestling K, Hebar A, Pruckner N, Marton E, Vinatzer U, Schreiber M (2012) The pro allele of the p53 codon 72 polymorphism is associated with decreased intratumoral expression of BAX and p21, and increased breast cancer risk. PLOS 7(10):e47325

    Article  CAS  Google Scholar 

  26. Ohayon T, Gershoni-Baruch R, Papa MZ, Distelman Menachem T, Eisenberg Barzilai S, Friedman E (2005) The R72P P53 mutation is associated with familial breast cancer in Jewish women. Br J Cancer 92:1144–1148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Damin A, Frazzon A, Damin D, Roehe A, Hermes V, Zettler C, Alexandre C (2006) Evidence for an association of TP53 codon 72 polymorphism with breast cancer risk. Cancer Detect Prev 30:523–529

    Article  CAS  PubMed  Google Scholar 

  28. Costa S, Pinto D, Pereira D, Rodrigues H, Cameselle-Teijeiro J, Medeiros R, Schmitt F (2008) Importance of TP53 codon 72 and intron 3 duplication 16 bp polymorphisms in prediction of susceptibility on breast cancer. BMC Cancer 8:32

    Article  PubMed Central  PubMed  Google Scholar 

  29. Zhuo W, Zhang Y, Xiang Z, Cai L, Chen Z (2009) Polymorphisms of TP53 codon 72 with breast carcinoma risk: evidence from 12226 cases and 10782 controls. J Exp Clin Cancer Res 28:115

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Ministry of Education and Science of the Republic of Serbia (Grant number 41026).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Krivokuca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivokuca, A.M., Malisic, E.J., Dobricic, J.D. et al. RAD51 135G>C and TP53 Arg72Pro polymorphisms and susceptibility to breast cancer in Serbian women. Familial Cancer 13, 173–180 (2014). https://doi.org/10.1007/s10689-013-9690-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-013-9690-3

Keywords

Navigation