Skip to main content
Log in

The Universal Euler Characteristic of V-Manifolds

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

The Euler characteristic is the only additive topological invariant for spaces of certain sort, in particular, for manifolds with certain finiteness properties. A generalization of the notion of a manifold is the notion of a V-manifold. We discuss a universal additive topological invariant of V-manifolds, the universal Euler characteristic. It takes values in the ring freely generated (as a Z-module) by isomorphism classes of finite groups. We also consider the universal Euler characteristic on the class of locally closed equivariant unions of cells in equivariant CW-complexes. We show that it is a universal additive invariant satisfying a certain “induction relation.” We give Macdonald-type identities for the universal Euler characteristic for V-manifolds and for cell complexes of the described type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Atiyah and G. Segal, “On equivariant Euler characteristics,” J. Geom. Phys., 6:4 (1989), 671–677.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Bryan and J. Fulman, “Orbifold Euler characteristics and the number of commuting mtuples in the symmetric groups,” Ann. Comb., 2:1 (1998), 1–6.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Chen and Y. Ruan, “Orbifold Gromov–Witten theory,” in: Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, 25–85.

    Chapter  Google Scholar 

  4. L. Dixon, J. Harvey, C. Vafa, and E. Witten, “Strings on orbifolds,” Nuclear Phys. B, 261:4 (1985), 678–686.

    Article  MathSciNet  Google Scholar 

  5. L. Dixon, J. Harvey, C. Vafa, and E. Witten, “Strings on orbifolds. II,” Nuclear Phys. B, 274:2 (1986), 285–314.

    Article  MathSciNet  Google Scholar 

  6. M. R. Dixon and T. A. Fournelle, “The indecomposability of certain wreath products indexed by partially ordered sets,” Arch. Math., 43 (1984), 193–207.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Farsi and Ch. Seaton, “Generalized orbifold Euler characteristics for general orbifolds and wreath products,” Algebr. Geom. Topol., 11:1 (2011), 523–551.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. M. Gusein-Zade, “Equivariant analogues of the Euler characteristic and Macdonald type formulas,” Uspekhi Mat. Nauk, 72:1(433) (2017), 3–36; English transl.: Russian Math. Surveys, 72:1 (2017), 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, “A power structure over the Grothendieck ring of varieties,” Math. Res. Lett., 11:1 (2004), 49–57.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, “On the power structure over the Grothendieck ring of varieties and its applications,” Trudy Mat. Inst. Steklov., 258 (2007), 58–69; English transl.: Proc. Steklov Inst. Math., 258:1 (2007), 53–64.

    MathSciNet  MATH  Google Scholar 

  11. S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, “Equivariant versions of higher order orbifold Euler characteristics,” Mosc. Math. J., 16:4 (2016), 751–765.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, “Grothendieck ring of varieties with finite groups actions,” Proc. Edinb. Math. Soc., Ser. 2 (to appear); https://arxiv.org/abs/1706.00918.

  13. F. Hirzebruch and T. Höfer, “On the Euler number of an orbifold,” Math. Ann., 286:1–3 (1990), 255–260.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Knutson, λ-Rings and the Representation Theory of the Symmetric Group, Lecture Notes in Math., vol. 308, Springer-Verlag, Berlin–New York, 1973.

    Google Scholar 

  15. P. M. Neumann, “On the structure of standard wreath products of groups,” Math. Z., 84 (1964), 343–373.

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Satake, “On a generalization of the notion of manifold,” Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 359–363.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Satake, “The Gauss–Bonnet theorem for V-manifolds,” J. Math. Soc. Japan, 9 (1957), 464–492.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Tamanoi, “Generalized orbifold Euler characteristic of symmetric products and equivariant Morava K-theory,” Algebr. Geom. Topol., 1 (2001), 115–141.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. tom Dieck, Transformation Groups, De Gruyter Studies in Math., vol. 8, Walter de Gruyter, Berlin, 1987.

    Book  Google Scholar 

  20. C. E. Watts, “On the Euler characteristic of polyhedra,” Proc. Amer. Math. Soc., 13 (1962), 304–306.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Gusein-Zade.

Additional information

Translated from Funktsional′nyi Analiz i Ego Prilozheniya, Vol. 52, No. 4, pp. 72–85, 2018

The work of the first author (Sections 2, 5, and 6) was supported by the Russian Science Foundation, grant 16-11-10018. The work of the second and third authors was partially supported by the competitive Spanish national grant MTM2016-76868-C2-1-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusein-Zade, S.M., Luengo, I. & Melle-Hernández, A. The Universal Euler Characteristic of V-Manifolds. Funct Anal Its Appl 52, 297–307 (2018). https://doi.org/10.1007/s10688-018-0239-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-018-0239-y

Key words

Navigation