Skip to main content
Log in

Analysis of wildfires and their extremes via spatial quantile autoregressive model

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

In this paper we propose a procedure to estimate the distribution of wildfire frequency and severity using the wildfire data measured by month during 1993–2015. To this end, a spatial quantile autoregressive model (SQAR) is applied to the data with an aid of extreme value theory. Using the proposed method we are able to predict the distributional behavior of the data and identify the hidden structures beyond their mean structures. In addition, abundant interpretations are available with a regression-based model. We provide the estimated results from the wildfire data, including significant explanatory variables and some meaningful interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Code availability

Codes for generating the results in the paper are available in https://github.com/JongminLee-stat/SQAR.

Data Availability

The datasets generated during and/or analysed during the current study are available from Optiz (2022) or from the corresponding author on reasonable request.

References

  • Casson, E., Coles, S.: Spatial regression models for extremes. Extremes 1(4), 449–468 (1999)

    Article  MATH  Google Scholar 

  • Chernozhukov, V., Hansen, C.: An iv model of quantile treatment effects. Econometrica 73(1), 245–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Chernozhukov, V., Hansen, C.: Instrumental quantile regression inference for structural and treatment effect models. J. Econ. 132(2), 491–525 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Chernozhukov, V., Fernández-Val, I., Galichon, A.: Quantile and probability curves without crossing. Econometrica 78(3), 1093–1125 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Cooley, D., Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat.Assoc. 102(479), 824–840 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Davison, A.C., Padoan, S.A., Ribatet, M.: Statistical modeling of spatial extremes. Stat. Sci. 27(2), 161–186 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • De Haan, L., Ferreira, A., Ferreira, A.: Extreme value theory: an introduction, vol. 21. Springer (2006)

    Book  MATH  Google Scholar 

  • Dennison, P.E., Brewer, S.C., Arnold, J.D., et al.: Large wildfire trends in the Western United States, 1984–2011. Geophys. Res. Lett. 41(8), 2928–2933 (2014)

    Article  Google Scholar 

  • Diaz, J.M.: Economic impacts of wildfire. Southern Fire Exchange 498, 2012–7 (2012)

    Google Scholar 

  • Duncan, D.T., Piras, G., Dunn, E.C., et al.: The built environment and depressive symptoms among urban youth: a spatial regression study. Spat. Spatiotemporal Epidemiol. 5, 11–25 (2013)

    Article  Google Scholar 

  • Einmahl, J.H., deHaan, L., Zhou, C.: Statistics of heteroscedastic extremes. J. R. Stat. Soc. Ser. B (Stat Methodol) 31–51 (2016)

  • Ferreira, A., De Haan, L.: The generalized pareto process; with a view towards application and simulation. Bernoulli 20(4), 1717–1737 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Genton, M.G., Butry, D.T., Gumpertz, M.L., et al.: Spatio-temporal analysis of wildfire ignitions in the St Johns River Water Management District, Florida. Int. J. Wildland Fire 15(1), 87–97 (2006)

    Article  Google Scholar 

  • Goulard, M., Laurent, T., Thomas-Agnan, C.: About predictions in spatial autoregressive models: Optimal and almost optimal strategies. Spat. Econ. Anal. 12(2–3), 304–325 (2017)

    Article  Google Scholar 

  • Heffernan, J.E., Tawn, J.A.: A conditional approach for multivariate extreme values (with discussion). J. R. Stat. Soc. Ser. B (Stat Methodol.) 66(3), 497–546 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Hijmans, R.J., Williams, E., Vennes, C.: Package ‘geosphere’. Cran.R-project.org (2017). Accessed 1 May 2021

  • Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3(5), 1163–1174 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Huser, R., Wadsworth, J.L.: Modeling spatial processes with unknown extremal dependence class. J. Am. Stat. Assoc. 114(525), 434–444 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Huser, R., Wadsworth, J.L.: Advances in statistical modeling of spatial extremes. Wiley Interdiscip. Rev. Comput. Stat. e1537 (2020)

  • Joseph, M.B., Rossi, M.W., Mietkiewicz, N.P., etal,: Spatiotemporal prediction of wildfire size extremes with Bayesian finite sample maxima. Ecol. Appl. 29(6), e01898 (2019)

  • Kanaroglou, P.S., Adams, M.D., De Luca, P.F., et al.: Estimation of sulfur dioxide air pollution concentrations with a spatial autoregressive model. Atmos. Environ. 79, 421–427 (2013)

    Article  Google Scholar 

  • Kelejian, H.H., Prucha, I.R.: A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J. Real Estate Financ. Econ. 17(1), 99–121 (1998)

    Article  Google Scholar 

  • Kelejian, H.H., Prucha, I.R.: A generalized moments estimator for the autoregressive parameter in a spatial model. Int. Econ. Rev. 40(2), 509–533 (1999)

    Article  MathSciNet  Google Scholar 

  • Kim, J., Park, S., Kwon, J., et al.: Estimation of spatio-temporal extreme distribution using a quantile factor model. Extremes 24(1), 177–195 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, T.H., Muller, C.: Two-stage quantile regression when the first stage is based on quantile regression. Economet. J. 7(1), 218–231 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker, R.: Quantile Regression. Cambridge University Press (2005)

    Book  MATH  Google Scholar 

  • Koenker, R., Portnoy, S., Ng, P.T., et al.: Package ‘quantreg’. Cran.R-project.org (2018). Accessed 1 May 2021

  • Koh, J., Pimont, F., Dupuy, J.L., et al.: Spatio-temporal wildfire modeling through point processes with moderate and extreme marks. Preprint at http://arxiv.org/abs/2105.08004 (2021)

  • Kostov, P.: A spatial quantile regression hedonic model of agricultural land prices. Spat. Econ. Anal. 4(1), 53–72 (2009)

    Article  Google Scholar 

  • Kostov, P.: Model boosting for spatial weighting matrix selection in spatial lag models. Environ. Plann. B. Plann. Des. 37(3), 533–549 (2010)

    Article  Google Scholar 

  • Liao, W.C., Wang, X.: Hedonic house prices and spatial quantile regression. J. Hous. Econ. 21(1), 16–27 (2012)

    Article  Google Scholar 

  • Liu, S., Hite, D.: Measuring the effect of green space on property value: an application of the hedonic spatial quantile regression. Tech. rep (2013)

  • Lome-Hurtado, A., Touza-Montero, J., White, P.C.: Environmental injustice in Mexico City: a spatial quantile approach. Exposure and Health 12(2), 265–279 (2020)

    Article  Google Scholar 

  • Machado, J.A.F., Silva, J.S.: Quantiles for counts. J. Am. Stat. Assoc. 100(472), 1226–1237 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • McMillen, D.P.: Quantile regression for spatial data. Springer Science & Business Media (2012)

  • Moritz, S., Bartz-Beielstein, T.: imputeTS: time series missing value imputation in R. R Journal 9(1), 207 (2017)

    Article  Google Scholar 

  • Nason, G.: Wavelet methods in statistics with R. Springer Science & Business Media (2008)

  • Opitz, T.: Editorial: Eva 2021 data competition on spatio-temporal prediction of wildfire activity in the United States. Extremes (2022)

  • Pace, R.K., Barry, R., Clapp, J.M., et al.: Spatiotemporal autoregressive models of neighborhood effects. J. Real Estate Financ. Econ. 17(1), 15–33 (1998)

    Article  Google Scholar 

  • Pyne, S.J.: Introduction to wildland fire. Fire Management in the United States. John Wiley & Sons (1984)

  • Que, X., Ma, X., Ma, C., et al.: A spatiotemporal weighted regression model (STWR v1. 0) for analyzing local nonstationarity in space and time. Geosci. Model Dev. 13(12), 6149–6164 (2020)

  • Rootzén, H., Tajvidi, N.: Multivariate generalized Pareto distributions. Bernoulli 12(5), 917–930 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Sawadogo, B., Barro, D.: Modeling space-time trends and dependence in extreme precipitations of Burkina Faso by the approach of the peaks-over-threshold. Preprint at http://arxiv.org/abs/2105.05548 (2021)

  • Su, L., Yang, Z.: Instrumental variable quantile estimation of spatial autoregressive models. Research Collection School of Economics (2011)

  • Sun, H., Tu, Y., Yu, S.M.: A spatio-temporal autoregressive model for multi-unit residential market analysis. J. Real Estate Financ. Econ. 31(2), 155–187 (2005)

    Article  Google Scholar 

  • Tawn, J., Shooter, R., Towe, R., et al.: Modelling spatial extreme events with environmental applications. Spatial Statistics 28, 39–58 (2018)

    Article  MathSciNet  Google Scholar 

  • Turkman, K.F., Turkman, A., Pereira, J.: Asymptotic models and inference for extremes of spatio-temporal data. Extremes 13(4), 375–397 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, H.J., Li, D., He, X.: Estimation of high conditional quantiles for heavy-tailed distributions. J. Am. Stat. Assoc. 107(500), 1453–1464 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Weissman, I.: Estimation of parameters and large quantiles based on the k largest observations. J. Am. Stat. Assoc. 73(364), 812–815 (1978)

    MathSciNet  MATH  Google Scholar 

  • Zhang, Z., Huser, R., Opitz, T., et al.: Modeling spatial extremes using normal mean-variance mixtures. Preprint at http://arxiv.org/abs/2105.05314 (2021)

  • Zietz, J., Zietz, E.N., Sirmans, G.S.: Determinants of house prices: a quantile regression approach. J. Real Estate Financ. Econ. 37(4), 317–333 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Thomas Opitz for organizing the data competition for the 12th International conference on Extreme Value Analysis 2021. We also thank Hee-Seok Oh for encouraging us to participate in the data competition and for discussion. We moreover thank anonymous two referees and an Associate Editor for insightful comments.

Funding

Jongmin Lee is a beneficiary of an individual grant from CAINS supported by a KIAS Individual Grant (AP090201) via the Center for AI and Natural Sciences at Korea Institute for Advanced Study (KIAS). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1A4A1018207, NRF-2022R1C1C2003747).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonpyo Kim.

Ethics declarations

Conflicts of interest

Jongmin Lee, Joonpyo Kim, Joonho Shin, Seongjin Cho, Seongmin Kim and Kyoungjae Lee declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1980 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Kim, J., Shin, J. et al. Analysis of wildfires and their extremes via spatial quantile autoregressive model. Extremes 26, 353–379 (2023). https://doi.org/10.1007/s10687-023-00462-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-023-00462-0

Keywords

AMS 2000 Subject Classifications

Navigation