Skip to main content
Log in

Asymptotic models and inference for extremes of spatio-temporal data

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

Recently there has been a lot of effort to model extremes of spatially dependent data. These efforts seem to be divided into two distinct groups: the study of max-stable processes, together with the development of statistical models within this framework; the use of more pragmatic, flexible models using Bayesian hierarchical models (BHM) and simulation based inference techniques. Each modeling strategy has its strong and weak points. While max-stable models capture the local behavior of spatial extremes correctly, hierarchical models based on the conditional independence assumption, lack the asymptotic arguments the max-stable models enjoy. On the other hand, they are very flexible in allowing the introduction of physical plausibility into the model. When the objective of the data analysis is to estimate return levels or kriging of extreme values in space, capturing the correct dependence structure between the extremes is crucial and max-stable processes are better suited for these purposes. However when the primary interest is to explain the sources of variation in extreme events Bayesian hierarchical modeling is a very flexible tool due to the ease with which random effects are incorporated in the model. In this paper we model a data set on Portuguese wildfires to show the flexibility of BHM in incorporating spatial dependencies acting at different resolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albin, P.: On extremal theory for non differentiable stationary processes. Ph.D. thesis, Dept. of Mathematical Statistics, University of Lund (1987)

  • Albin, P.: On extremal theory for stationary processes. Ann. Probab. 18, 92–128 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Banerjee, S., Carlin, B.P., Gelfand, A.: Hierarchical Modelling and Analysis for Spatial Data. Chapman and Hall (2004)

  • Buishand, A., de Haan, L., Zhou, C.: On spatial extremes: with application to a rainfall problem. Ann. Appl. Stat. 2, 624–642 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Castellanos, M.E., Cabras, S.: A default Bayesian procedure for the generalized Pareto distribution. J. Stat. Plan. Inference 137, 473–483 (2006)

    MathSciNet  Google Scholar 

  • Chavez-Demoulin, V., Davison, A.: Generalized additive modelling of sample extremes. Appl. Stat. 54, 207–222 (2005)

    MATH  MathSciNet  Google Scholar 

  • Cocchi, D., Greco, F., Trivisano, C.: Hierarchical space-time modelling of PM 10 pollution. Atmos. Environ. 41, 532–542 (2007)

    Article  Google Scholar 

  • Coles, S.: An Introduction to Statistical Modelling of Extreme Values. Springer, New York (2001)

    Google Scholar 

  • Coles, S., Tawn, J.: Modelling extremes of the areal rainfall process. J. R. Stat. Soc. B 58, 329–347 (1996)

    MATH  MathSciNet  Google Scholar 

  • Cooley, D., Naveau, P., Joneli, V., Rababtel, A., Grancher, D.: A Bayesian hierarchical extreme value model for lichenometry. Environmetrics 17, 555–574 (2006)

    Article  MathSciNet  Google Scholar 

  • Cooley, D., Nychka, D., Naveau, P.: Bayesian spatial model of extreme precipitation return levels. JASA 102, 824–840 (2007)

    MATH  MathSciNet  Google Scholar 

  • de Haan, L., Ferreira, A.: Extreme Value Theory, An Introduction. Springer, New York (2006)

    MATH  Google Scholar 

  • de Haan, L., Pereira, T.: Spatial extremes: models for the stationary case. Ann. Stat. 34, 146–168 (2006)

    Article  MATH  Google Scholar 

  • de Zea Bermudez, P., Mendes, J., Pereira, J.M.C., Turkman, K.F., Vasconcelos, M.J.P.: Spatial and temporal extremes of wildfire sizes in Portugal (1984–2004). Int. J. Wildland Fire (2009, in press)

  • Fawcett, L., Walshaw, D.: A hierarchical model for extreme wind speeds. Appl. Stat. 55, 631–646 (2006)

    MATH  MathSciNet  Google Scholar 

  • Fougères, A.L., Nolan, J.P., Rootzén, H.: Models for dependent extremes using stable mixtures. Scand. J. Statist. 36, 42–59 (2009)

    MATH  Google Scholar 

  • Gelman, A., Pardoe, I.: Bayesian measures of explained variance and pooling in multilevel models. Technometrics 40, 241–251 (2005)

    MathSciNet  Google Scholar 

  • Heffernan, J.E., Tawn, J.: A conditional approach for multivariate extreme values. J. R. Stat. Soc. B 66, 497–546 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Kabluchko, Z., Schlather, M., de Haan, L.: Stationary Max-stable fields associated to negative definite functions. Ann. Probab. www.arxiv.org (2009)

  • Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, New York (1983)

    MATH  Google Scholar 

  • Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Stat. Comput. 10, 325–337 (2000)

    Article  Google Scholar 

  • Mendes J.M., de Zea Bermudez P., Pereira J.M.C., Turkman K.F., Vasconcelos, M.J.P.: Spatial extremes of wildfire sizes: Bayesian hierarchical models for extremes. Environ. Ecol. Stat. doi:10.1007/s10651-008-0099-3 (2008)

    Google Scholar 

  • Padoan, S.A., Ribatet, M., Sisson, S.A.: Likelihood-based inference for max-stable processes. JASA (Theory and Methods) (2009, submitted)

  • Piterbarg, V.: Asymptotic Methods in the Theory of Gaussian Processes and Fields. AMS Monographs (1996)

  • Reed, W.J., McKelvey, K.S.: Power-law behaviour and parametric models for the size-distribution of forest fires. Ecol. Model. 150, 239–254 (2002)

    Article  Google Scholar 

  • Ribatet, M.: A User’s Guide to the SpatialExtremes Package. École Polytechnique Fédérale de Lausanne, Switzerland (2009)

    Google Scholar 

  • Sang, H.: Extreme value modeling for space-time data with meteorological applications. Ph.D. thesis, Duke University (2008)

  • Schlather, M.: Models for stationary max-stable random fields. Extremes 5, 33–44 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Thomas, A., Best, N., Lunn, D., Arnold, R., Spiegelhalter, D.: GeoBUGS User Manual Version 1.2 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Feridun Turkman.

Additional information

The authors acknowledge the support from the Projects FCT/PTDC/MAT/64353/2006 and FCT/POCI/2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turkman, K.F., Amaral Turkman, M.A. & Pereira, J.M. Asymptotic models and inference for extremes of spatio-temporal data. Extremes 13, 375–397 (2010). https://doi.org/10.1007/s10687-009-0092-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-009-0092-8

Keywords

AMS 2000 Subject Classifications

Navigation