Skip to main content
Log in

Reconstruction of incomplete wildfire data using deep generative models

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

We present our submission to the Extreme Value Analysis 2021 Data Challenge in which teams were asked to accurately predict distributions of wildfire frequency and size within spatio-temporal regions of missing data. For this competition, we developed a variant of the powerful variational autoencoder models, which we call Conditional Missing data Importance-Weighted Autoencoder (CMIWAE). Our deep latent variable generative model requires little to no feature engineering and does not necessarily rely on the specifics of scoring in the Data Challenge. It is fully trained on incomplete data, with the single objective to maximize log-likelihood of the observed wildfire information. We mitigate the effects of the relatively low number of training samples by stochastic sampling from a variational latent variable distribution, as well as by ensembling a set of CMIWAE models trained and validated on different splits of the provided data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data are available from the organizers of the Extreme Value Analysis 2021 Data Challenge, https://www.maths.ed.ac.uk/school-of-mathematics/eva-2021/competitions/data-challenge. Data are also available from the authors upon reasonable request and with permission of the organisers of the Data Challenge.

Code availability

Our model, training and evaluation code is available at https://github.com/Blackbox-EVA2021/CMIWAE.

References

  • Bratti, J., Gaya, J., Drews-Jr, P., Botelho, S., Protas, É.: Understading image restoration convolutional neural networks with network inversion. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 215–220 (2017). https://doi.org/10.1109/ICMLA.2017.0-156

  • Burda, Y., Grosse, R., Salakhutdinov, R.: Importance Weighted Autoencoders. Paper presented at the 4th International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016 (2016). https://doi.org/10.48550/arXiv.1509.00519

  • Domke, J., Sheldon, D.: Importance weighting and variational inference. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Proceedings of the 32nd International Conference on Neural Information Processing Systems. NIPS’18, pp. 4475–4484. Curran Associates Inc., Red Hook, NY, USA (2018). https://papers.nips.cc/paper/2018/hash/25db67c5657914454081c6a18e93d6dd-Abstract.html

  • Gershman, S.J., Goodman, N.D.: Amortized inference in probabilistic reasoning. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 36 (2014). https://escholarship.org/uc/item/34j1h7k5

  • Howard, J., et al.: fastai, GitHub (2018). https://github.com/fastai/fastai

  • Huot, F., Hu, R.L., Goyal, N., Sankar, T., Ihme, M., Chen, Y.-F.: Next day wildfire spread: A machine learning dataset to predict wildfire spreading from remote-sensing data. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022). https://doi.org/10.1109/tgrs.2022.3192974

    Article  Google Scholar 

  • Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. (2015). Preprint at https://arxiv.org/abs/1502.03167

  • Ipsen, N.B., Mattei, P.-A., Frellsen, J.: not-MIWAE: Deep generative modelling with missing not at random data. In: ICLR 2021 - International Conference on Learning Representations, Virtual, Austria (2021). https://hal.inria.fr/hal-03044124

  • Jia, M., Zhang, C., Zhao, Z., Wang, L.: Bipartite graph attention autoencoders for unsupervised change detection using vhr remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2022). https://doi.org/10.1109/TGRS.2022.3190504

    Article  Google Scholar 

  • Karras, T., Laine, S., Aila, T.: A Style-Based Generator Architecture for Generative Adversarial Networks. (2019). Preprint at https://arxiv.org/abs/1812.04948

  • Kim, D., Hwang, J., Kim, Y.: On casting importance weighted autoencoder to an em algorithm to learn deep generative models. In: Chiappa, S., Calandra, R. (eds.) Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 108, pp. 2153–2163. PMLR, Cambridge, MA (2020). https://proceedings.mlr.press/v108/kim20b.html

  • Kindermans, P.-J., Hooker, S., Adebayo, J., Alber, M., Schütt, K.T., Dähne, S., Erhan, D., Kim, B.: In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) The (Un)reliability of Saliency Methods, pp. 267–280. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_14

  • Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. (2017). Preprint at https://arxiv.org/abs/1412.6980

  • Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings (2014). https://doi.org/10.48550/arXiv.1312.6114

  • Kramer, M.: Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37, 233–243 (1991)

    Article  Google Scholar 

  • Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc., Red Hook, NY, USA (2012). https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

  • Lai, C., Zeng, S., Guo, W., Liu, X., Li, Y., Liao, B.: Forest fire prediction with imbalanced data using a deep neural network method. Forests 13(7) (2022). https://doi.org/10.3390/f13071129

  • Mattei, P.-A., Frellsen, J.: MIWAE: Deep generative modelling and imputation of incomplete data sets. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 4413–4423. PMLR, Cambridge, MA (2019). https://proceedings.mlr.press/v97/mattei19a.html

  • Nitish, S., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  • Opitz, T.: Editorial: EVA 2021 Data Competition on spatio-temporal prediction of wildfire activity in the United States. Extremes (2022)

  • Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An imperative style, high-performance deep learning library. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pp. 8024–8035 (2019). http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library

  • Preisler, H.K., Brillinger, D.R., Burgan, R.E., Benoit, J.W.: Probability based models for estimation of wildfire risk. Int. J. Wildland Fire 13(2), 133–142 (2004). https://doi.org/10.1071/WF02061

    Article  Google Scholar 

  • Pereira, J.M.C., Turkman, K.F.: Statistical models of vegetation fires: Spatial and temporal patterns. In: Gelfland, A.E., Fuentes, M., Hoeting, H.A., Smith, R.L. (eds.) Handbook of Environmental and Ecological Statistics, p. 20. Chapman and Hall/CRC, Boca Raton (2019)

  • Rainforth, T., Kosiorek, A., Le, T.A., Maddison, C., Igl, M., Wood, F., Teh, Y.W.: Tighter variational bounds are not necessarily better. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 4277–4285. PMLR, Cambridge, MA (2018). https://proceedings.mlr.press/v80/rainforth18b.html

  • Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: Xing, E.P., Jebara, T. (eds.) Proceedings of the 31st International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 32, pp. 1278–1286. PMLR, Cambridge, MA (2014). https://proceedings.mlr.press/v32/rezende14.html

  • Roeder, G., Wu, Y., Duvenaud, D.: Sticking the landing: Simple, lower-variance gradient estimators for variational inference. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. NIPS’17, pp. 6928–6937. Curran Associates Inc., Red Hook, NY, USA (2017). https://proceedings.neurips.cc/paper/2017/hash/e91068fff3d7fa1594dfdf3b4308433a-Abstract.html

  • Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  • Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A Deep Cascade of Convolutional Neural Networks for MR Image Reconstruction. (2017) Preprint at https://arxiv.org/abs/1703.00555v1

  • Siddharth, N.: DReG-PyTorch, GitHub (2019). https://github.com/iffsid/DReG-PyTorch

  • Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. (2015). Preprint at https://arxiv.org/abs/1409.1556

  • Simonyan, K., Vedaldi, A., Zisserman, A.: Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. (2014). Preprint at https://arxiv.org/abs/1312.6034

  • Smith, L.N.: A disciplined approach to neural network hyper-parameters: Part 1 – learning rate, batch size, momentum, and weight decay. (2018). Preprint at https://arxiv.org/abs/1803.09820

  • Smith, L.N., Topin, N.: Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates. (2018). Preprint at https://arxiv.org/abs/1708.07120

  • Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) 29th Annual Conference on Neural Information Processing Systems 2015. Advances in Neural Information Processing Systems, vol. 28, p. 3483. Curran Associates, Inc., Red Hook, NY, USA (2016). https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf

  • Tomsett, R., Harborne, D., Chakraborty, S., Gurram, P., Preece, A.: Sanity checks for saliency metrics. Proceedings of the AAAI Conference on Artificial Intelligence 34(04), 6021–6029 (2020). https://doi.org/10.1609/aaai.v34i04.6064

    Article  Google Scholar 

  • Tucker, G., Lawson, D., Gu, S., Maddison, C.: Doubly reparameterized gradient estimators for monte carlo objectives. (2019). https://openreview.net/pdf?id=HkG3e205K7

  • Vegard, A., Renna, F., Poon, C., Adcock, B., Hansen, A.C.: On instabilities of deep learning in image reconstruction and the potential costs of ai. Proc. Natl. Acad. Sci. 117(48), 30088–30095 (2020). https://doi.org/10.1073/pnas.1907377117

    Article  Google Scholar 

  • Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3), 229–256 (1992). https://doi.org/10.1007/BF00992696

    Article  MATH  Google Scholar 

  • Windrim, L., Ramakrishnan, R., Melkumyan, A., Murphy, R.J., Chlingaryan, A.: Unsupervised feature-learning for hyperspectral data with autoencoders. Remote Sens. 11(7) (2019). https://doi.org/10.3390/rs11070864

  • Xi, D.D.Z., Taylor, S.W., Woolford, D.G., Dean, C.B.: Statistical models of key components of wildfire risk. Annual Review of Statistics and Its Application 6(1), 197–222 (2019). https://doi.org/10.1146/annurev-statistics-031017-100450

    Article  MathSciNet  Google Scholar 

  • Yao, B., Li, W., Pan, W., Yang, Z., Chen, D., Li, J., Qu, J.: Image reconstruction with a deep convolutional neural network in high-density super-resolution microscopy. Opt. Express 28(10), 15432–15446 (2020). https://doi.org/10.1364/OE.392358

    Article  Google Scholar 

Download references

Acknowledgements

We thank Stjepan Šebek and Josip Žubrinić for valuable discussions and help in data preparation.

Funding

This research was partially supported by: Croatian Science Foundation (HRZZ) grant PZS-2019-02-3055 from “Research Cooperability” program funded by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domagoj Vlah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivek, T., Vlah, D. Reconstruction of incomplete wildfire data using deep generative models. Extremes 26, 251–271 (2023). https://doi.org/10.1007/s10687-022-00459-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-022-00459-1

Keywords

Navigation