Skip to main content
Log in

Adapting the Hill estimator to distributed inference: dealing with the bias

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

The distributed Hill estimator is a divide-and-conquer algorithm for estimating the extreme value index when data are stored in multiple machines. In applications, estimates based on the distributed Hill estimator can be sensitive to the choice of the number of the exceedance ratios used in each machine. Even when choosing the number at a low level, a high asymptotic bias may arise. We overcome this potential drawback by designing a bias correction procedure for the distributed Hill estimator, which adheres to the setup of distributed inference. The asymptotically unbiased distributed estimator we obtained, on the one hand, is applicable to distributed stored data, on the other hand, inherits all known advantages of bias correction methods in extreme value statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

The code for simulation study is available upon request.

References

  • Alves, M.F., Gomes, M.I., de Haan, L.: A new class of semi-parametric estimators of the second order parameter. Port. Math. 60(2), 193–214 (2003)

    MathSciNet  MATH  Google Scholar 

  • Cai, J.J., de Haan, L., Zhou, C.: Bias correction in extreme value statistics with index around zero. Extremes 16(2), 173–201 (2012)

    Article  MathSciNet  Google Scholar 

  • Chen, L., Li, D., Zhou, C.: Distributed inference for extreme value index. Biometrika. to appear (2021). https://doi.org/10.1093/biomet/asab001

    Article  MATH  Google Scholar 

  • Danielsson, J., de Haan, L., Peng, L., de Vries, C.G.: Using a bootstrap method to choose the sample fraction in tail index estimation. J. Multivar. Anal. 76(2), 226–248 (2001)

    Article  MathSciNet  Google Scholar 

  • de Haan, L., Ferreira, A.:  Extreme value theory: an introduction. Springer Science & Business Media (2006)

  • de Haan, L., Mercadier, C., Zhou, C.: Adapting extreme value statistics to financial time series: dealing with bias and serial dependence. Finance Stochast. 20(2), 321–354 (2016)

    Article  MathSciNet  Google Scholar 

  • Dekkers, A.L., Einmahl, J.H., de Haan, L.: A moment estimator for the index of an extreme-value distribution. Ann. Stat. 17(4), 1833–1855 (1989)

    MathSciNet  MATH  Google Scholar 

  • Drees, H., Ferreira, A., de Haan, L.: On maximum likelihood estimation of the extreme value index. Ann. Appl. Probab. 14(3), 1179–1201 (2004)

    Article  MathSciNet  Google Scholar 

  • Einmahl, J.H., de Haan, L., Zhou, C.: Statistics of heteroscedastic extremes. J. R. Stat. Soc. Ser. B Stat Methodol. 78(1), 31–51 (2016)

    Article  MathSciNet  Google Scholar 

  • Fan, J., Wang, D., Wang, K., Zhu, Z.: Distributed estimation of principal eigenspaces. Ann. Stat. 47(6), 3009–3031 (2019)

    Article  MathSciNet  Google Scholar 

  • Gomes, M.I., de Haan, L., Peng, L.: Semi-parametric estimation of the second order parameter in statistics of extremes. Extremes 4(5), 387–414 (2002)

    Article  MathSciNet  Google Scholar 

  • Gomes, M.I., de Haan, L., Rodrigues, L.H.: Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70(1), 31–52 (2008)

    MathSciNet  MATH  Google Scholar 

  • Gomes, M.I., Pestana, D.: A simple second-order reduced bias’ tail index estimator. J. Stat. Comput. Simul. 77(6), 487–502 (2007)

    Article  MathSciNet  Google Scholar 

  • Guillou, A., Hall, P.: A diagnostic for selecting the threshold in extreme value analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63(2), 293–305 (2001)

    Article  MathSciNet  Google Scholar 

  • Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3(5), 1163–1174 (1975)

    Article  MathSciNet  Google Scholar 

  • Li, R., Lin, D.K., Li, B.: Statistical inference in massive data sets. Appl. Stoch. Model. Bus. Ind. 29(5), 399–409 (2013)

    MathSciNet  Google Scholar 

  • Smith, R.L.: Estimating tails of probability distributions. Ann. Stat. 1174–1207 (1987)

  • Volgushev, S., Chao, S.-K., Cheng, G.: Distributed inference for quantile regression processes. Ann. Stat. 47(3), 1634–1662 (2019)

    Article  MathSciNet  Google Scholar 

  • Zhou, C.: Existence and consistency of the maximum likelihood estimator for the extreme value index. J. Multivar. Anal. 100(4), 794–815 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the editors and three referees for their helpful comments and suggestions. Liujun Chen and Deyuan Li’s research is partially supported by the National Nature Science Foundations of China grants 11971115 and 71661137005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyuan Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proofs

1.1.1 Preliminary

Lemma 1

Let \(Y, Y_1,\dots , Y_n\) be i.i.d. Pareto (1) random variables with distribution function \(1-1/y, \ y\ge 1\). Let \(Y^{(1)} \ge \cdots \ge Y^{(n)}\) be the order statistics of \(\left\{ Y_1,\dots ,Y_n \right\}\). Let f be a function such that \(\text {Var} \left\{ f(Y) \right\} <\infty\). Then for any \(k\ge 1\),

$$\begin{aligned} \frac{1}{k}\sum _{i=1}^k f\left( \frac{Y^{(i)}}{Y^{(k+1)}} \right) {\mathop {=}\limits ^{d}}\frac{1}{k}\sum _{i=1}^k f(Y_i^*), \end{aligned}$$

where \(Y_1^*, Y_2^*,\ldots , Y_k^*\) are i.i.d. Pareto (1) random variables. Moreover,

$$\begin{aligned} \sqrt{k} \Biggr\{ \frac{1}{k}\sum _{i=1}^k f\left( \frac{Y^{(i)}}{Y^{(k+1)}} \right) -\mathbb {E} f(Y) \Biggl\} \end{aligned}$$

is independent of \(Y^{(k+1)}\) and asymptotically normally distributed with mean zero and variance \(\text {Var} \left\{ f(Y) \right\}\) as \(n \rightarrow \infty\), provided that \(k=k(n) \rightarrow \infty\) and \(k/n \rightarrow 0\).

Proof of Lemma 1

This Lemma follows directly from Lemma 3.2.3 in de Haan and Ferreira (2006) with the fact that \(\log Y\) follows a standard exponential distribution. \(\square\)

Lemma 2

Let \(Y_1,\dots ,Y_n\) be i.i.d. Pareto (1) random variables and \(Y^{(1)}\ge \cdots \ge Y^{(n)}\) be the order statistics of \(\left\{ Y_1,\dots ,Y_n \right\}\). Then for any \(\rho <0\),

$$\begin{aligned} \mathbb {E}\Biggl\{ \left( \frac{k}{n}Y^{(k+1)} \right) ^{\rho } \Biggr\} =g(k,n,\rho ), \end{aligned}$$

where \(g(k,n,\rho )\) is defined in (3). Moreover, if k is a fixed integer, then \(g(k,n,\rho ) \rightarrow k^{\rho }\Gamma (k-\rho +1)/\Gamma (k+1)\) as \(n \rightarrow \infty\). If k is an intermediate sequence, i.e. \(k\rightarrow \infty , k/n \rightarrow 0\) as \(n \rightarrow \infty\), then,

$$\begin{aligned} g\left(k,n,\rho \right)=1+\frac{1}{2}\left(\rho ^2-\rho \right)k^{-1}-\frac{1}{2}\left(\rho ^2-\rho \right)\left(n-\rho \right)^{-1}+O\left(k^{-2}\right). \end{aligned}$$

Proof of Lemma 2

$$\begin{aligned} \mathbb {E}\Biggl\{ \left( \frac{k}{n}Y^{(k+1)} \right) ^{\rho } \Biggr\}&= \frac{n!}{(n-k-1)!k!} \int _{1}^{\infty } \left( 1-\frac{1}{y} \right) ^{n-k-1}\left( \frac{1}{y} \right) ^{k+2} \left( \frac{k}{n}y \right) ^{\rho }dy \\&= \left( \frac{k}{n} \right) ^{\rho } \frac{n!}{(n-k-1)!k!}\int _{1}^{\infty } \left( 1-\frac{1}{y} \right) ^{n-k-1}\left( \frac{1}{y} \right) ^{k+2-\rho } dy \\&= \left( \frac{k}{n} \right) ^{\rho } \frac{\Gamma (n+1)\Gamma (k-\rho +1)}{\Gamma (n-\rho +1)\Gamma (k+1)} \\&=g(k,n,\rho ). \end{aligned}$$

We first handle the case when k is a fixed integer. By the Stirling’s formula,

$$\begin{aligned} \Gamma (x)=\sqrt{2\pi \left(x-1\right)} \Bigl \{ e^{-1}\left(x-1\right) \Bigr \} ^{x-1}\left\{ 1+\left(x-1\right)^{-1}/12+O\left(1/x^2\right) \right\} \end{aligned}$$

as \(x\rightarrow \infty\), we have that, as \(n \rightarrow \infty\),

$$\begin{aligned} \begin{aligned} \Gamma (n+1)\sim (2\pi n)^{1/2}\left( \frac{n}{e} \right) ^{n}, \quad \Gamma (n-\rho +1)\sim \left\{ 2\pi (n-\rho ) \right\} ^{1/2}\left( \frac{n-\rho }{\rho } \right) ^{n-\rho }, \end{aligned} \end{aligned}$$

which leads to

$$\begin{aligned} g(k,n,\rho )\rightarrow k^{\rho }\frac{\Gamma (k-\rho +1)}{\Gamma (k+1)}. \end{aligned}$$

Next, we handle the case when k is an intermediate sequence. By the Stirling’s formula, we have that, as \(n \rightarrow \infty\),

$$\begin{aligned} \begin{aligned} g(k,n,\rho )&=\left( 1-\frac{\rho }{k} \right) ^{k-\rho +1/2}\left( 1+\frac{\rho }{n-\rho } \right) ^{n-\rho +1/2} \frac{1+n^{-1}/12+O(n^{-2})}{1+(n-\rho )^{-1}/12+O(n^{-2})} \frac{1+(k-\rho )^{-1}/12+O(k^{-2})}{1+k^{-1}/12+O(k^{-2})}\\&=\left( 1-\frac{\rho }{k} \right) ^{k-\rho +1/2}\left( 1+\frac{\rho }{n-\rho } \right) ^{n-\rho +1/2}\left\{ 1+O(n^{-2}) \right\} \left\{ 1+O(k^{-2}) \right\} .\\ \end{aligned} \end{aligned}$$

By the Taylor’s formula and some direct calculation, we obtain that, as \(n\rightarrow \infty\),

$$\begin{aligned} \left( 1-\frac{\rho }{k} \right) ^{k-\rho +1/2} = e^{-\rho }\left\{ 1+\frac{1}{2}(\rho ^2-\rho )k^{-1}+O\left(k^{-2}\right) \right\} , \end{aligned}$$

and

$$\begin{aligned} \left( 1+\frac{\rho }{n-\rho } \right) ^{n-\rho +1/2} =e^{\rho }\left\{ 1-\frac{1}{2}\left(\rho ^2-\rho \right)\left(n-\rho \right)^{-1}+O\left(n^{-2}\right) \right\}. \end{aligned}$$

It follows that, as \(n \rightarrow \infty\),

$$\begin{aligned} g(k,n,\rho )=1+\frac{1}{2}(\rho ^2-\rho )k^{-1}-\frac{1}{2}(\rho ^2-\rho )(n-\rho )^{-1}+O(k^{-2}). \end{aligned}$$

\(\square\)

Lemma 3

Let \(Y_1,\dots ,Y_n\) be i.i.d. Pareto (1) random variables and \(Y^{(1)}\ge \cdots \ge Y^{(n)}\) be the order statistics of \(\left\{ Y_1,\dots ,Y_n \right\}\). Define for \(\rho <0\),

$$\begin{aligned} Z_k=\frac{1}{k}\sum _{i=1}^k \frac{\left( Y^{(i)}/Y^{(k+1)} \right) ^{\rho }-1}{\rho }. \end{aligned}$$

Then, the following results hold.

  1. (i)

    For fixed k, \(\mathbb {E}(Z_k^a)<\infty\), for \(a=1,2,3,4\). Moreover, \(\mathbb {E}\left( Z_k^2 \right) -\left\{ \mathbb {E}\left( Z_k \right) \right\} ^2>0\).

  2. (ii)

    For intermediate k, i.e., \(k = k(n)\rightarrow \infty , k/n \rightarrow 0\) as \(n\rightarrow \infty\), and \(a=1,2,3,4\),

    $$\begin{aligned} \mathbb {E}\left( Z_k^a \right) = \frac{1}{(1-\rho )^a}\left\{ 1+\frac{a(a-1)}{2(1-2\rho )}\frac{1}{k}+O\left(k^{-2}\right) \right\} . \end{aligned}$$

Proof of Lemma 3

By Lemma 1, we have that,

$$\begin{aligned} Z_k {\mathop {=}\limits ^{d}} \frac{1}{k}\sum _{i=1}^k \frac{\left( Y_i^* \right) ^{\rho }-1}{\rho }, \end{aligned}$$

where \(Y_1^*,\dots ,Y_k^*\) are i.i.d. Pareto (1) random variables. Denote \(T_i=\left\{ (Y_i^*)^{\rho }-1 \right\} /\rho\), for \(i=1,\dots ,k\) and \(Z_k= k^{-1}\sum _{i=1}^k T_i\). Then, \(T_i, i=1,\dots ,k\) follows the generalized Pareto distribution with the cumulative distribution function \(F(t) = 1-(1+\rho t)^{-1/\rho }\). Thus, we have that for \(a=1,2,3,4\),

$$\begin{aligned} \mathbb {E}(T_i^a)=\frac{a!}{(1-a\rho )\cdots (1-\rho )}. \end{aligned}$$

First, we handle the case when k is fixed. The result is obvious since \(kZ_k\) is a finite sum of i.i.d. generalized Pareto random variables with shape parameter \(\rho <0\).

Next, we handle the case when k is an intermediate sequence. For \(a=1\), we have that, \(E(Z_k)=E(T_i)=(1-\rho )^{-1}\).

For \(a=2\), we have that,

$$\begin{aligned} \begin{aligned} \mathbb {E}\left( Z_k^2 \right)&= \frac{1}{k^2}\left\{ \sum _{i=1}^k E\left( T_i^2 \right) +\sum _{i\ne j}\mathbb {E} \left( T_i \right) \mathbb {E}\left( T_j \right) \right\}\\&=\frac{1}{k^2}\left[k E\left( T_i^2 \right) +k(k-1) \left\{ \mathbb {E} \left( T_i \right) \right\} ^2 \right] \\&= \frac{1}{(1-\rho )^2}+\frac{1}{k}\frac{1}{(1-2\rho )(1-\rho )^2}. \end{aligned} \end{aligned}$$

For \(a=3\), we have that

$$\begin{aligned} \mathbb {E}\left( Z_k^3 \right)&= \frac{1}{k^2} \left \{ \sum _{i=1}^k \mathbb {E}\left( T_i^3 \right) +\sum _{i = j \ne l}\mathbb {E} \left( T_i T_j \right) \mathbb {E}\left( T_l \right) + \sum _{i\ne j \ne l}\mathbb {E} \left( T_i \right) \mathbb {E}\left( T_j \right) \mathbb {E}\left( T_l \right) \right\} \\&=\frac{1}{k^3}\left[k \mathbb {E}\left( T_i^3 \right) +3k(k-1) \mathbb {E} \left( T_i^2 \right) \mathbb {E}\left( T_i \right) +k(k-1)(k-2) \left\{ \mathbb {E}(T_i) \right\} ^3 \right]\\&= \frac{1}{(1-\rho )^3}+\frac{1}{k}\frac{3}{(1-2\rho )(1-\rho )^3}+O(k^{-2}). \end{aligned}$$

The term \(\mathbb {E} \left( Z_k^4 \right)\) can be handled in a similar way as that for handling \(\mathbb {E}\left( Z_k^3 \right)\). \(\square\)

Lemma 4

Assume that the distribution function F satisfies the third order condition (4). Then there exist two functions \(A_0(t)\sim A(t)\) and \(B_0(t)=O\left\{ B(t) \right\}\) as \(t\rightarrow \infty\), such that for any \(\delta >0\), there exists a \(t_0 = t_0(\delta )>0\), for all \(t\ge t_0\) and \(tx\ge t_0\),

$$\begin{aligned} \left|\frac{\frac{\log U(tx)-\log U(t)-\gamma \log x}{A_0(t)}-\frac{x^{\rho }-1}{\rho }}{B_0(t)}-\frac{x^{\rho +\tilde{\rho }}-1}{\rho +\tilde{\rho }} \right|\le \delta x^{\rho +\tilde{\rho }}\max (x^{\delta },x^{-\delta }). \end{aligned}$$

Proof of Lemma 4

This lemma follows from applying Theorem B.3.10 in de Haan and Ferreira (2006) to the function \(f(t):=\log U(t)-\gamma \log t\). \(\square\)

1.2 Proofs for Section 3

Recall that \(U=\left\{ 1/(1-F) \right\} ^{\leftarrow }\). Then \(X{\mathop {=}\limits ^{d}}U(Y)\), where Y follows the Pareto (1) distribution. Since we have i.i.d. observations \(\left\{ X_1,\dots ,X_N \right\}\), we can write \(X_i{\mathop {=}\limits ^{d}}U(Y_i)\), where \(\left\{ Y_1,\dots ,Y_N \right\}\) is a random sample of Y. Recall that the N observations are stored in m machines with n observations each. For machine j, let \(Y_j^{(1)} \ge \cdots \ge Y_j^{(n)}\) denote the order statistics of the n Pareto (1) distributed variables corresponding to the n observations in this machine. Then \(M_j^{(i)}{\mathop {=}\limits ^{d}}U(Y_j^{(i)}), i=1,\dots ,n, j=1,\dots ,m\).

Proof of Proposition 1

We intend to replace t and tx in Lemma 4 by n/k and \(Y_j^{(i)}, i=1,\dots ,k+1, j=1,\dots ,m\), respectively. For this purpose, we introduce the set

$$\begin{aligned} \mathcal {F}_{t_0}:=\left\{ Y_j^{(k+1)}\ge t_0, \ for \ all \ 1\le j\le m \right\} . \end{aligned}$$

By Lemma S.2 in the supplementary material of Chen et al. (2021), we have that for any \(t_0>1\), if condition (2) holds, then \(\lim _{N\rightarrow \infty }\mathbb {P}\left( \mathcal {F}_{t_0} \right) =1\). Then, we can apply the intended replacement to get that, as \(N\rightarrow \infty\),

$$\begin{aligned} \begin{aligned} \log U\left(Y_j^{(i)}\right) -\log U(n/k)&=-\gamma \log \left( kY_j^{(i)}/n \right) -A_0(n/k)\left\{ \left( kY_j^{(i)}/n \right) ^{\rho }-1 \right\} /\rho \\&\quad + A_0(n/k)B_0(n/k)\left\{ \left( kY_j^{(i)}/n \right) ^{\rho +\tilde{\rho }}-1 \right\} /\left( \rho +\tilde{\rho } \right) \\&\quad +o_P(1)A_0(n/k)B_0(n/k)\left( kY_j^{(i)}/n \right) ^{\rho +\tilde{\rho } \pm \delta }, \end{aligned} \end{aligned}$$
(11)

where the \(o_P(1)\) term is uniform for all \(1\le i\le k+1\) and \(1\le j\le m\). By applying (11) twice for a general i and \(i=k+1\) and the inequality \(x^{\rho \pm \delta }/y^{\rho \pm \delta }\le (x/y)^{\rho \pm \delta }\) for any \(x,y>0\), we get that as \(N \rightarrow \infty\),

$$\begin{aligned} \begin{aligned}\log U\left( Y_{j}^{(i)}\right) -\log U\left( Y_{j}^{(k+1)}\right) =& \ \gamma \left( \log Y_{j}^{(i)}-\log Y_{j}^{(k+1)}\right) \\&+ A_{0}(n / k) \left( k Y_{j}^{(k+1)} / n\right) ^{\rho } \left\{ \left( Y_{j}^{(i)} / Y_{j}^{(k+1)} \right) ^{\rho }-1 \right\} /{\rho }\\& + A_{0}(n / k) B_{0}(n / k)\left( k Y_{j}^{(k+1)} / n\right) ^{\rho +\tilde{\rho }}\left\{ \left( Y_{j}^{(i)} / Y_{j}^{(k+1)} \right) ^{\rho +\tilde{\rho }}-1 \right\} /\left( \rho +\tilde{\rho } \right) \\& + o_P(1)A_{0}(n / k)B_0(n/k) \left( k Y_{j}^{(k+1)}/n\right) ^{\rho +\tilde{\rho } \pm \delta }\left\{ \left( Y_{j}^{(i)}/Y_j^{(k+1)}\right) ^{\rho +\tilde{\rho } \pm \delta }+1 \right\} . \end{aligned} \end{aligned}$$
(12)

By taking the average across i and j, we obtain that

$$\begin{aligned} \begin{aligned}\sqrt{km}\left( R_k^{(1)}-\gamma \right) = & \ \gamma \sqrt{km}\frac{1}{m}\frac{1}{k}\sum _{j=1}^m \sum _{i=1}^k \left\{ \log \left( Y_j^{(i)}/Y_j^{(k+1)} \right) -\gamma \right\} \\& + \sqrt{km}A_0(n/k)\frac{1}{m}\sum _{j=1}^m \left( k Y_{j}^{(k+1)} / n\right) ^{\rho } \rho ^{-1} \frac{1}{k}\sum _{i=1}^k \left\{ \left( Y_{j}^{(i)} / Y_{j}^{(k+1)} \right) ^{\rho }-1 \right\} \\& + \sqrt{km}A_0(n/k)B_0(n/k)\frac{1}{m}\sum _{j=1}^m \left( k Y_{j}^{(k+1)} / n\right) ^{\rho +\tilde{\rho }} (\rho +\tilde{\rho })^{-1}\frac{1}{k}\sum _{i=1}^k \left\{ \left( Y_{j}^{(i)} / Y_{j}^{(k+1)} \right) ^{\rho +\tilde{\rho }}-1 \right\} \\& +o_P(1)\sqrt{km}A_{0}(n / k)B_0(n/k) \frac{1}{m}\sum _{j=1}^m \left( k Y_{j}^{(k+1)} / n\right) ^{\rho +\tilde{\rho }\pm \delta }\frac{1}{k}\sum _{i=1}^k \left\{ \left( Y_{j}^{(i)}/Y_j^{(k+1)}\right) ^{\rho +\tilde{\rho } \pm \delta }+1 \right\} \\ =:& \ I_1+I_2+I_3+I_4. \end{aligned} \end{aligned}$$

Firstly, we handle \(I_1\). By Lemma 1, we have that,

$$\begin{aligned} I_1 {\mathop {=}\limits ^{d}} \gamma \sqrt{km}\left( \frac{1}{km}\sum _{j=1}^m\sum _{i=1}^k \log Y_{i}^{j,*}-1 \right) , \end{aligned}$$

where \(Y_{i}^{j,*}, i=1,\dots ,k,j=1,\dots ,m\) are independent and identically distributed Pareto (1) random variables. The central limit theorem yields that as \(N \rightarrow \infty\)\(I_1 = \gamma P_N^{(1)} +o_P(1),\) where \(P_N^{(1)}\sim N(0,1)\).

For \(I_2\), write \(\delta _{j,n}=\left( k Y_{j}^{(k+1)} / n\right) ^{\rho }(k\rho )^{-1}\sum _{i=1}^k \left\{ \left( Y_{j}^{(i)} / Y_{j}^{(k+1)} \right) ^{\rho }-1 \right\}\). Then we have that \(I_2=\sqrt{km}A_0(n/k)m^{-1}\sum _{j=1}^m \delta _{j,n}\), where \(\delta _{j,n}, j=1,\dots ,m\) are i.i.d. random variables.

We are going to show that, as \(N \rightarrow \infty\),

$$\begin{aligned} \sqrt{km} \left\{ \frac{1}{m}\sum _{j=1}^m \delta _{j,n} -\mathbb {E}\left( \delta _{j,n} \right) \right\} =O_P(1). \end{aligned}$$
(13)

If k is fixed, (13) follows directly from Lemma 3 (i) and the Lyapunov central limit theorem for triangular array.

Next, we handle the case when k is an intermediate sequence. In this case, in order to apply the Lyapunov central limit theorem with 4-th moment, we need to calculate \(\text {Var}\left( \delta _{j,n} \right)\) and \(\mathbb {E}[\left\{ \delta _{j,n}-\mathbb {E}\left( \delta _{j,n} \right) \right\} ^4 ]\). Denote \(m_{n}^{(a)}:=\mathbb {E}\left\{ \left( \delta _{j,n} \right) ^a \right\} ,\ a=1,2,3,4\). By Lemma 1, we have that,

$$\begin{aligned} m_n^{(a)}= g(k,n,a\rho )\mathbb {E} \left[\left\{ \frac{1}{k}\sum _{i=1}^k\frac{\left( Y_{j}^{(i)} / Y_{j}^{(k+1)} \right) ^{\rho }-1}{\rho } \right\} ^a \right]. \end{aligned}$$

First, we calculate \(\text {Var}\left( \delta _{j,n} \right)\). By Lemma 3, we have that,

$$\begin{aligned} \begin{aligned} \text {Var}(\delta _{j,n})&=m_{n}^{(2)}-\left( m_{n}^{(1)} \right) ^2 \\&= g(k,n,2\rho )\left\{ \frac{1}{(1-\rho )^2}+\frac{1}{k}\frac{1}{(1-2\rho )(1-\rho )^2}+O(k^{-2}) \right\} -\left\{ g(k,n,\rho ) \right\} ^2\left\{ \frac{1}{(1-\rho )^2}+O(k^{-2}) \right\} \\&= \frac{1}{k} g(k,n,2\rho )\frac{1}{(1-2\rho )(1-\rho )^2}+\left[g(k,n,2\rho )-\left\{ g(k,n,\rho ) \right\} ^2 \right]\frac{1}{(1-\rho )^2}+O(k^{-2}), \end{aligned} \end{aligned}$$

here in the last step, we used the fact that as \(n\rightarrow \infty\), \(g(k,n,\rho )\rightarrow 1\) and \(g(k,n,2\rho )\rightarrow 1\). By Lemma 2, we have that, as \(n \rightarrow \infty\),

$$\begin{aligned} g(k,n,2\rho )-\left\{ g(k,n,\rho ) \right\} ^2&=1+\frac{1}{2}\left( 4\rho ^2-2\rho \right) \frac{1}{k} +o(k^{-1})-\left\{ 1+\frac{1}{2}\left( \rho ^2-\rho \right) \frac{1}{k}+o(k^{-1}) \right\} ^2\\&=\frac{1}{k}\rho ^2+o(k^{-1}). \end{aligned}$$

Hence, as \(n\rightarrow \infty\), \(\text {Var}\left( \delta _{j,n} \right) =k^{-1}(1-\rho )^{-2}\left( \left( 1-2\rho \right) ^{-1}+\rho ^2 \right) +o(k^{-1})\).

Next, we calculate \(\mathbb {E}[\left\{ \delta _{j,n}-\mathbb {E}\left( \delta _{j,n} \right) \right\} ^4 ]\). By Lemma 2 and Lemma 3, we have that, for \(a=3,4\), as \(N\rightarrow \infty\),

$$\begin{aligned} \begin{aligned} m_{n}^{(a)}&=\left(1-\rho \right)^{-a}\left\{ 1+\frac{1}{2}\frac{1}{k}\frac{a(a-1)}{1-2\rho }+O\left(k^{-2}\right) \right\} \left\{ 1+\frac{1}{2}\left(a^2\rho ^2-a\rho \right)k^{-1}-\frac{1}{2}\left(a^2\rho ^2-a\rho \right)\left(n-a\rho \right)^{-1}+O(k^{-2}) \right\} \\&=(1-\rho )^{-a}\left\{ 1+k^{-1}\frac{1}{2}\frac{a(a-1)}{1-2\rho }+\frac{1}{2}\left(a^2\rho ^2-a\rho \right)k^{-1}-\frac{1}{2}\left(a^2\rho ^2-a\rho \right)\left(n-a\rho \right)^{-1}+O\left(k^{-2}\right) \right\} . \end{aligned} \end{aligned}$$

Note that,

$$\begin{aligned} \mathbb {E}\left[\left\{ (\delta _{j,n}-\mathbb {E}\left( \delta _{j,n} \right) \right\} ^4 \right]=m_n^{(4)}-4m_n^{(3)}m_n^{(1)}+6m_n^{(2)}\left( m_n^{(1)} \right) ^2-3\left( m_n^{(1)} \right) ^4. \end{aligned}$$

By some direct calculation, all terms of order \(k^{-1}\) and \(n^{-1}\) are cancelled out. Thus, as \(N \rightarrow \infty\), \(\mathbb {E}[\left\{ (\delta _{j,n}-\mathbb {E}\left( \delta _{j,n} \right) \right\} ^4 ] =O(k^{-2})\). Combining \(\text {Var}(\delta _{j,n})\) and \(\mathbb {E}[\left\{ \delta _{j,n}-\mathbb {E}\left( \delta _{j,n} \right) \right\} ^4 ]\), we conclude that the sequences \(\left\{ \delta _{j,n} \right\} _{j=1}^m\) satisfy the Lyapunov’s condition. Then, (13) follows by the central limit theorem. Applying (13), we obtain that, as \(N\rightarrow \infty\),

$$\begin{aligned} I_2 = \sqrt{km}A_0(n/k) \left\{ \mathbb {E}\left( \delta _{j,n} \right) +O_P\left(1/\sqrt{km}\right) \right\} =\frac{g(k,n,\rho )}{1-\rho }\sqrt{km}A_0(n/k)+o_P(1). \end{aligned}$$

For \(I_3\), by using the weak law of large numbers for triangular array, we have that, as \(N \rightarrow \infty\),

$$\begin{aligned} \begin{aligned} I_3&= \frac{\sqrt{km}A_0(n/k)B_0(n/k)}{1-\rho -\tilde{\rho }}\mathbb {E}\left\{ \left( kY_1^{(k+1)}/n \right) ^{\rho +\tilde{\rho }} \right\} \left\{ 1+o_P(1) \right\} \\&=\sqrt{km}A_0(n/k)B_0(n/k)\frac{g(k,n,\rho +\tilde{\rho })}{1-\rho -\tilde{\rho } }+o_P(1), \end{aligned} \end{aligned}$$

where the last equality follows by the condition \(\sqrt{km}A(n/k)B(n/k)=O(1)\).

For \(I_4\), by similar arguments as for \(I_3\), we obtain that, as \(N\rightarrow \infty\), \(I_4{\mathop {\rightarrow }\limits ^{P}} 0\). Combining \(I_1,I_2,I_3\) and \(I_4\), we have proved (i).

Next, we handle \(R_k^{(2)}\). By (12), we obtain that, as \(N\rightarrow \infty ,\)

$$\begin{aligned} \begin{aligned}\sqrt{km}\left( R_k^{(2)}-2\gamma ^2 \right) =& \ \gamma ^2 \frac{1}{mk}\sum _{j=1}^m \sum _{i=1}^k \left\{ \log ^2 \left( Y_j^{(i)}/Y_j^{(k+1)} \right) -2 \right\} \\& + 2\gamma \sqrt{km}A_0(n/k)\frac{1}{km}\sum _{j=1}^m \left( kY_j^{(k+1)}/n \right) ^{\rho }\sum _{i=1}^k \log \left( Y_j^{(i)}/Y_j^{(k+1)} \right) \left\{ \left( Y_j^{(i)}/Y_j^{(k+1)} \right) ^{\rho }-1 \right\} /\rho \\& +\sqrt{km} A_0^2(n/k) \frac{1}{km}\sum _{j=1}^m \left( kY_j^{(k+1)}/n \right) ^{2\rho }\sum _{i=1}^k \left\{ \left( Y_j^{(i)}/Y_j^{(k+1)} \right) ^{\rho }-1 \right\} ^2/\rho ^2 \\& +2\gamma \sqrt{km}A_0(n/k) B_0(n/k) \frac{1}{km} \sum _{j=1}^m \left( kY_j^{(k+1)}/n \right) ^{\rho +\tilde{\rho }}\sum _{i=1}^k \log \left( Y_j^{(i)}/Y_j^{(k+1)} \right) \frac{\left( Y_j^{(i)}/Y_j^{(k+1)} \right) ^{\rho +\tilde{\rho }}-1}{\rho +\tilde{\rho }}\\&\quad + o_P(1)\\=:& \ I_5+I_6+I_7+I_8+o_P(1). \end{aligned} \end{aligned}$$

For \(I_5\), by Lemma 1, we have that

$$\begin{aligned} I_5{\mathop {=}\limits ^{d}}\gamma ^2\sqrt{km}\left\{ \frac{1}{km}\sum _{j=1}^m\sum _{i=1}^k\left( \log Y_{i}^{j,*} \right) ^2-2 \right\} . \end{aligned}$$

The central limit theorem yields that as \(N \rightarrow \infty\), \(I_5 = \gamma ^2 P_N^{(2)}+o_P(1)\), where \(P_N^{(2)}\sim N(0,20)\). In addition, the covariance of \(P_N^{(1)}\) and \(P_N^{(2)}\) is equal to the covariance of \(\log Y_i^{j,*}\) and \(\left( \log Y_i^{j,*} \right) ^2\), where \(Y_{i}^{j,*}\) follows the Pareto (1) distribution. Hence, \(\text {Cov}(P_N^{(1)},P_N^{(2)})=4.\)

For \(I_6\), we write \(I_6 = 2\sqrt{km}A_0(n/k)m^{-1}\sum _{j=1}^m \eta _{j,n}\), where

$$\begin{aligned} \eta _{j,n}=\left( k Y_{j}^{(k+1)} / n\right) ^{\rho }(k\rho )^{-1}\sum _{i=1}^k \log \left( Y_{j}^{(i)} / Y_{j}^{(k+1)} \right) \left\{ \left( Y_{j}^{(i)} / Y_{j}^{(k+1)} \right) ^{\rho }-1 \right\} \end{aligned}$$

are i.i.d. random variables for \(j=1,2,\dots ,m\). We can verify the Lyapunov’s condition for the series \(\left\{ \eta _{j,n} \right\} _{j=1}^m\) following similar steps as those for \(\left\{ \delta _{j,n} \right\} _{j=1}^m\). Then by applying the central limit theorem and Lemma 2, we obtain that

$$\begin{aligned} I_6=2\gamma \sqrt{km}A_0(n/k) g(k,n,\rho )\frac{1}{\rho }\left\{ \frac{1}{(1-\rho )^2}-1 \right\} +o_P(1). \end{aligned}$$

By the weak law of large numbers for triangular array, we have that

$$\begin{aligned} I_7=\sqrt{km}A_0^2(n/k)\frac{g(k,n,2\rho )}{\rho ^2}\left\{ \frac{1}{1-2\rho }-\frac{2}{1-\rho }+1 \right\} +o_P(1), \end{aligned}$$

and

$$\begin{aligned} I_8=2\gamma \sqrt{km}A_0(n/k)B_0(n/k)\frac{g(k,n,\rho +\tilde{\rho })}{\rho +\tilde{\rho }}\left\{ \frac{1}{(1-\rho -\tilde{\rho })^2}-1 \right\} +o_P(1). \end{aligned}$$

Combining the results for \(I_5,I_6,I_7\) and \(I_8\), we have proved (ii).

Finally, we handle \(R_k^{(3)}\). Also, by (12), we have that

$$\begin{aligned}\sqrt{km}\left( R_k^{(3)}-6\gamma ^3 \right) =& \ \gamma ^3 \frac{1}{mk}\sum _{j=1}^m \sum _{i=1}^k \left\{ \log ^3 \left( Y_j^{(i)}/Y_j^{(k+1)} \right) -6 \right\} \\& + 3\gamma ^2\sqrt{km}A_0(n/k)\frac{1}{km}\sum _{j=1}^m \left( kY_j^{(k+1)}/n \right) ^{\rho }\\&\quad\sum _{i=1}^k \left\{ \log \left( Y_j^{(i)}/Y_j^{(k+1)} \right) \right\} ^2\frac{\left( Y_j^{(i)}/Y_j^{(k+1)} \right) ^{\rho }-1}{\rho } \\& + 3\gamma \sqrt{km}A_0^2(n/k)\frac{1}{km}\sum _{j=1}^m \left( kY_j^{(k+1)}/n \right) ^{2\rho }\\&\quad\sum _{i=1}^k \log \left( Y_j^{(i)}/Y_j^{(k+1)} \right) \left\{ \frac{\left( Y_j^{(i)}/Y_j^{(k+1)} \right) ^{\rho }-1}{\rho } \right\} ^2\\& +3\gamma ^2\sqrt{km}A_0(n/k) B_0(n/k) \frac{1}{km} \sum _{j=1}^m \left( kY_j^{(k+1)}/n \right) ^{\rho +\tilde{\rho }}\\&\quad\sum _{i=1}^k \left\{ \log \left( Y_j^{(i)}/Y_j^{(k+1)} \right) \right\} ^2\frac{\left( Y_j^{(i)}/Y_j^{(k+1)} \right) ^{\rho +\tilde{\rho }}-1}{\rho +\tilde{\rho }} +o_P(1)\\=:& \ I_9+I_{10}+I_{11}+I_{12}+o_P(1). \end{aligned}$$

By similar steps as for handling the four items \(I_5, I_6,I_7\) and \(I_8\), we can show that \(I_9 = \gamma ^3 P_N^{(3)}+o_P(1)\), where \(P_N^{(3)}\sim N(0,684)\) and \(\text {Cov}(P_N^{(1)},P_N^{(3)})=18, \text {Cov}(P_N^{(2)},P_N^{(3)})=98\). And

$$\begin{aligned} \begin{aligned} I_{10}&=6\gamma ^2 \sqrt{km}A_0(n/k)\frac{g(k,n,\rho )}{\rho }\left\{ \frac{1}{(1-\rho )^3}-1 \right\} +o_P(1),\\ I_{11}&=3\gamma \sqrt{km} A^2_0(n/k) \frac{g(k,n,2\rho )}{\rho ^2}\left\{ \frac{1}{(1-2\rho )^2}-\frac{2}{(1-\rho )^2}+1 \right\} +o_P(1),\\ I_{12}&=6\gamma ^2\sqrt{km}A_0(n/k)B_0(n/k)\frac{g(k,n,\rho +\tilde{\rho })}{\rho +\tilde{\rho }}\left\{ \frac{1}{(1-\rho -\tilde{\rho })^3}-1 \right\} +o_P(1), \end{aligned} \end{aligned}$$

which yields (iii). \(\square\)

Proof of Theorem 1

Applying Proposition 1 with \(k=k_{\rho }\), we have that, as \(N \rightarrow \infty\),

$$\begin{aligned} R_{k_{\rho }}^{(1)}=&\ \gamma +\frac{\gamma }{\sqrt{k_{\rho }m}} P_N^{(1)} + \frac{g(k_{\rho },n,\rho )}{1-\rho }A_0(n/k_{\rho })+\frac{g(k_{\rho },n,\rho +\tilde{\rho })}{1-\rho -\tilde{\rho }}A_0(n/k_{\rho })B_0(n/k_{\rho })+\frac{1}{\sqrt{k_{\rho }m}}o_P(1),\\ R_{k_{\rho }}^{(2)}=& \ 2\gamma ^2+\frac{\gamma ^2}{\sqrt{k_{\rho }m}} P_N^{(2)} +2 \gamma A_0(n/k_{\rho })\frac{g(k_{\rho },n,\rho )}{\rho }\left\{ \frac{1}{(1-\rho )^2}-1 \right\} \\&+A_0^2(n/k_{\rho })\dfrac{g(k_{\rho },n,2\rho )}{\rho ^2}\left( \frac{1}{1-2\rho }-\frac{2}{1-\rho }+1 \right) \\&+2\gamma A_0(n/k_{\rho })B_0(n/k_{\rho })\frac{g(k_{\rho },n,\rho +\tilde{\rho })}{\rho +\tilde{\rho }}\left\{ \frac{1}{(1-\rho -\tilde{\rho })^2}-1 \right\} +\frac{1}{\sqrt{k_{\rho }m}}o_P(1),\\ R_{k_{\rho }}^{(3)}=& \ 6\gamma ^3+\frac{\gamma ^3}{\sqrt{k_{\rho }m}}P_N^{(3)}+6\gamma A_0(n/k_{\rho })\frac{g(k_{\rho },n,\rho )}{\rho }\left\{ \frac{1}{(1-\rho )^3}-1 \right\} \\& +3A_0^2(n/k_{\rho })\frac{g(k_{\rho },n,2\rho )}{\rho ^2}\left\{ \frac{1}{(1-2\rho )^2}-\frac{2}{(1-\rho )^2}+1 \right\} \\&+6\gamma A_0(n/k_{\rho })B_0(n/k_{\rho })\frac{g(k_{\rho },n,\rho +\tilde{\rho })}{\rho +\tilde{\rho }}\left\{ \frac{1}{(1-\rho -\tilde{\rho })^3}-1 \right\} +\frac{1}{\sqrt{k_{\rho }m}}o_P(1). \end{aligned}$$

As a consequence, we have that, as \(N \rightarrow \infty\),

$$\begin{aligned} \begin{aligned} \left( R_{k_{\rho }}^{(1)} \right) ^{\tau }&=\gamma ^{\tau }\left\{ 1+ \frac{\tau }{\sqrt{k_{\rho }m}} P_N^{(1)} +\frac{\tau }{\gamma }\frac{g(k_{\rho },n,\rho )}{1-\rho } A_0(n/k_{\rho })+\frac{\tau }{\gamma }\frac{g(k_{\rho },n,\rho +\tilde{\rho })}{1-\rho -\tilde{\rho }}A_0(n/k_{\rho })B_0(n/k_{\rho }) \right\} \\&\quad +\frac{1}{\sqrt{k_{\rho }m}}o_P(1),\\ \left( R_{k_{\rho }}^{(2)}/2 \right) ^{\tau /2}&=\gamma ^{\tau }\Bigg [1+\frac{\tau }{\sqrt{k_{\rho }m}} P_N^{(2)} +\frac{\tau }{2\gamma }A_0(n/k_{\rho })\frac{g(k_{\rho },n,\rho )}{\rho }\left\{ \frac{1}{(1-\rho )^2}-1 \right\} \\&\quad + \frac{\tau }{4\gamma } A_0^2(n/k_{\rho })\frac{g(k_{\rho },n,2\rho )}{\rho ^2}\left( \frac{1}{1-2\rho }-\frac{2}{1-\rho }+1 \right) \\&\quad +\frac{\tau }{2\gamma }A_0(n/k_{\rho })B_0(n/k_{\rho })\frac{g(k_{\rho },n,\rho +\tilde{\rho })}{\rho +\tilde{\rho }}\left\{ \frac{1}{(1-\rho -\tilde{\rho })^2}-1 \right\} \Bigg ]+\frac{1}{\sqrt{k_{\rho }m}}o_P(1),\\ \left( R_{k_{\rho }}^{(3)}/6 \right) ^{\tau /3}&=\gamma ^{\tau }\Bigg [1+\frac{\tau }{\sqrt{k_{\rho }m}}P_N^{(3)}+\frac{\tau }{3\gamma } A_0(n/k_{\rho })\frac{g(k_{\rho },n,\rho )}{\rho }\left\{ \frac{1}{(1-\rho )^3}-1 \right\} \\&\quad +\frac{\tau }{6\gamma } A_0^2(n/k_{\rho })\frac{g(k_{\rho },n,2\rho )}{\rho ^2}\left\{ \frac{1}{(1-2\rho )^2}-\frac{2}{(1-\rho )^2}+1 \right\} \\&\quad +\frac{\tau }{3\gamma } A_0(n/k_{\rho })B_0(n/k_{\rho })\frac{g(k_{\rho },n,\rho +\tilde{\rho })}{\rho +\tilde{\rho }}\left\{ \frac{1}{(1-\rho -\tilde{\rho })^3}-1 \right\} \Bigg ]+\frac{1}{\sqrt{k_{\rho }m}}o_P(1). \end{aligned} \end{aligned}$$

It follows that, as \(N\rightarrow \infty\),

$$\begin{aligned} \gamma ^{-\tau }\left\{ \left( R_{k_{\rho }}^{(1)} \right) ^{\tau } -\left( R_{k_{\rho }}^{(2)}/2 \right) ^{\tau /2} \right\}= & \ \frac{\tau }{\sqrt{k_{\rho }m}}\left( P_N^{(1)}-P_N^{(2)} \right) +\frac{\tau }{\gamma }g(k_{\rho },n,\rho )A_0(n/k_{\rho })\frac{-\rho }{2(1-\rho )^2} \\&+A_0^2\left( n/k_{\rho } \right) O(1)+A_0\left( n/k_{\rho } \right) B_0\left( n/k_{\rho } \right) O(1)+\frac{1}{\sqrt{k_{\rho }m}}o_P(1), \end{aligned}$$

and

$$\begin{aligned} \gamma ^{-\tau }\left\{ \left( R_{k_{\rho }}^{(2)}/2 \right) ^{\tau /2} -\left( R_{k_{\rho }}^{(2)}/6 \right) ^{\tau /3} \right\}= & \ \frac{\tau }{\sqrt{k_{\rho }m}}\left( P_N^{(2)}-P_N^{(3)} \right) +\frac{\tau }{\gamma }g(k_{\rho },n,\rho )A_0(n/k_{\rho })\frac{\rho (\rho -3)}{6(1-\rho )^3} \\&+A_0^2\left( n/k_{\rho } \right) O(1)+A_0\left( n/k_{\rho } \right) B_0\left( n/k_{\rho } \right) O(1)+\frac{1}{\sqrt{k_{\rho }m}}o_P(1). \end{aligned}$$

By the condition (5), the dominating terms in the two expressions above are

$$\begin{aligned} \frac{\tau }{\gamma }g(k_{\rho },n,\rho )A_0(n/k_{\rho })\frac{-\rho }{2(1-\rho )^2} \quad \text {and} \quad \frac{\tau }{\gamma }g(k_{\rho },n,\rho )A_0(n/k_{\rho })\frac{\rho (\rho -3)}{6(1-\rho )^3}, \end{aligned}$$

respectively. Therefore, as \(N \rightarrow \infty\),

$$\begin{aligned} \begin{aligned} T_{k_{\rho },\tau }&=3\frac{\rho -1}{\rho -3} \left\{ 1+\frac{\gamma }{\sqrt{k_{\rho }m}}\frac{2(1-\rho )^2}{-\rho A_0(n/k_{\rho })}\left( P_N^{(1)}-P_N^{(2)} \right) -\frac{\gamma }{\sqrt{k_{\rho }m}A_0(n/k_{\rho })} \frac{6(1-\rho )^3}{\rho ^2-3\rho }\left( P_N^{(2)}-P_N^{(3)} \right) \right\} \\&\quad +O_P\left\{ A_0\left( n/k_{\rho } \right) \right\} +O_P\left\{ B_0\left( n/k_{\rho } \right) \right\} +\frac{1}{\sqrt{k_{\rho }m}A_0(n/k_{\rho })}o_P(1). \end{aligned} \end{aligned}$$

It follows that as \(N\rightarrow \infty\),

$$\begin{aligned} \sqrt{k_{\rho }m}A_0(n/k_{\rho })\left( T_{k_{\rho },\tau }-3\frac{\rho -1}{\rho -3} \right) =& -\gamma \frac{2(1-\rho )^2}{\rho }\left( P_N^{(1)}-P_N^{(2)} \right) \\&-\gamma \frac{6(1-\rho )^3}{\rho ^2-3\rho }\left( P_N^{(2)}-P_N^{(3)} \right) +O_P(1). \end{aligned}$$

Theorem 1 is thus proved by applying the Cramér’s delta method. \(\square\)

Proof of Theorem 2

By Proposition 1, as \(N \rightarrow \infty\), \(R_{k_n}^{(1)}\) has the following asymptotic expansion:

$$\begin{aligned} \sqrt{k_nm}\left( R_{k_n}^{(1)}-\gamma \right) -\gamma P_N^{(1)}-\frac{g(k_n,n,\rho )}{1-\rho }\sqrt{k_nm}A_0(n/k_n)=o_P(1), \end{aligned}$$

which leads to

$$\begin{aligned} \sqrt{k_nm}\left\{ \left( R_{k_n}^{(1)} \right) ^2-\gamma ^2 \right\} -2\gamma ^2 P_N^{(1)}-2\gamma \frac{g(k_n,n,\rho )}{1-\rho }\sqrt{k_nm}A_0(n/k_n)=o_P(1). \end{aligned}$$

Together with the asymptotic expansion of \(R_{k_n}^{(2)}\), we have that, as \(N\rightarrow \infty\),

$$\begin{aligned} \sqrt{k_nm}\left\{ R_{k_n}^{(2)}-2\left( R_{k_n}^{(1)} \right) ^2 \right\} -\gamma ^2\left( P_N^{(2)}-4P_N^{(1)} \right) -\sqrt{k_nm}A_0(n/k_n) g(k_n,n,\rho )\frac{2\gamma \rho }{(1-\rho )^2}=o_P(1). \end{aligned}$$

Thus, as \(N\rightarrow \infty\),

$$\begin{aligned}\sqrt{k_nm}\left( \tilde{\gamma }_{k_n,k_{\rho },\tau }-\gamma \right) =& \ \sqrt{k_nm}\left( R_{k_n}^{(1)}-\gamma \right) - \frac{1}{2R_{k_n}^{(1)}\hat{\rho }_{k_{\rho },\tau } (1-\hat{\rho }_{k_{\rho },\tau })^{-1}}\sqrt{k_n m}\left\{ R_{k_n}^{(2)}-2\left( R_{k_n}^{(1)} \right) ^2 \right\} \\ =& \ \gamma P_N^{(1)} +\sqrt{k_nm}A_0(n/k_n)\frac{g(k_n,n,\rho )}{1-\rho }+o_P(1)\\& -\frac{1}{2R_{k_n}^{(1)}\hat{\rho }_{k_{\rho },\tau } (1-\hat{\rho }_{k_{\rho },\tau })^{-1}}\left\{ \gamma ^2\left( P_N^{(2)}-4P_N^{(1)} \right) \right.\\&\left.+\sqrt{k_nm}A_0(n/k_n) g(k_n,n,\rho )\frac{2\gamma \rho }{(1-\rho )^2}+o_P(1) \right\} \\=& \ \gamma P_N^{(1)}-\frac{\gamma ^2(1-\hat{\rho }_{k_{\rho },\tau })}{R_{k_n}^{(1)}\hat{\rho }_{k_{\rho },\tau }}\left( P_N^{(2)}/2-2P_N^{(1)} \right) \\& +\sqrt{k_n m}A_0(n/k_n)\frac{\rho }{(1-\rho )^2}g(k_n,n,\rho ) \left( \frac{1-\rho }{\rho }-\frac{1-\hat{\rho }_{k_{\rho },\tau }}{\hat{\rho }_{k_{\rho },\tau }} \right) +o_P(1). \end{aligned}$$

The relation \(k_n/k_{\rho }\rightarrow 0\) implies that \(A(n/k_n)/A(n/k_{\rho })\rightarrow 0\) as \(N \rightarrow \infty\). Thus, by Theorem 1, we have that, as \(N \rightarrow \infty\),

$$\begin{aligned} \sqrt{k_n m}A_0(n/k_n)\frac{\rho }{(1-\rho )^2}g(k_n,n,\rho )\left( \frac{1-\rho }{\rho }-\frac{1-\hat{\rho }_{k_{\rho },\tau }}{\hat{\rho }_{k_{\rho },\tau }} \right) =o_P(1). \end{aligned}$$

Together with the consistency of \(\hat{\rho }_{k_{\rho },\tau }\) and \(R_{k_n}^{(1)}\), we have that, as \(N \rightarrow \infty\),

$$\begin{aligned} \sqrt{k_nm}\left( \tilde{\gamma }_{k_n,k_{\rho },\tau }-\gamma \right) = \frac{\gamma }{\rho }\left\{ P_N^{(2)}(\rho -1)/2+P_N^{(1)}(2-\rho ) \right\} +o_P(1). \end{aligned}$$

Combining with Proposition 1, we obtain that, as \(N\rightarrow \infty\),

$$\begin{aligned} \sqrt{k_nm}\left( \tilde{\gamma }_{k_n,k_{\rho },\tau }-\gamma \right) {\mathop {\rightarrow }\limits ^{d}} N\left[0,\gamma ^2 \left\{ 1+\left( \rho ^{-1}-1 \right) ^2 \right\} \right]. \end{aligned}$$

\(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Li, D. & Zhou, C. Adapting the Hill estimator to distributed inference: dealing with the bias. Extremes 25, 389–416 (2022). https://doi.org/10.1007/s10687-022-00440-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-022-00440-y

Keywords

Navigation