Skip to main content

A spatio-temporal model for Red Sea surface temperature anomalies

Abstract

This paper details the approach of team Lancaster to the 2019 EVA data challenge, dealing with spatio-temporal modelling of Red Sea surface temperature anomalies. We model the marginal distributions and dependence features separately; for the former, we use a combination of Gaussian and generalised Pareto distributions, while the dependence is captured using a localised Gaussian process approach. We also propose a space-time moving estimate of the cumulative distribution function that takes into account spatial variation and temporal trend in the anomalies, to be used in those regions with limited available data. The team’s predictions are compared to results obtained via an empirical benchmark. Our approach performs well in terms of the threshold-weighted continuous ranked probability score criterion, chosen by the challenge organiser.

References

  • Allison, E. H., Perry, A. L., Badjeck, M.-C., Adger, W. N., Brown, K., Conway, D., Halls, A. S., Pilling, G. M., Reynolds, J. D., Andrew, N. L., Dulvy, N. K.: Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 10(2), 173–196 (2009)

    Article  Google Scholar 

  • Behrens, C. N., Lopes, H. F., Gamerman, D.: Bayesian analysis of extreme events with threshold estimation. Stat. Model. 4(3), 227–244 (2004)

    MathSciNet  Article  Google Scholar 

  • Brander, K.: Impacts of climate change on fisheries. J. Mar. Syst. 79(3-4), 389–402 (2010)

    Article  Google Scholar 

  • Coles, S. G.: An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer-Verlag London (2001)

  • Cooley, D., Naveau, P., Poncet, P.: Variograms for spatial max-stable random fields. In: Bertail, P., Sourlier, P., Doukhan, P. (eds.) Dependence in Probability and Statistics, pages 373–390. Springer (2006)

  • Cooley, D., Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102(479), 824–840 (2007)

    MathSciNet  Article  Google Scholar 

  • Cressie, N., Wikle, C. K.: Statistics for Spatio-Temporal Data John Wiley & Sons (2011)

  • Davis, R. A., Klüppelberg, C., Steinkohl, C.: Statistical inference for max-stable processes in space and time. Journal of the Royal Statistical Society Series B (Statistical Methodology) 75(5), 791–819 (2013)

    MathSciNet  Article  Google Scholar 

  • Davison, A. C., Huser, R.: Statistics of extremes. Annual Review of Statistics and its Application 2, 203–235 (2015)

    Article  Google Scholar 

  • Davison, A. C., Huser, R., Thibaud, E.: Spatialextremes. In: Gelfand, A.E., Fuentes, M., Hoeting, J.A., Smith, R.L. (eds.) Handbook of Environmental and Ecological Statistics. CRC Press (2019)

  • Davison, A.C., Padoan, S.A., Ribatet, M.: Statistical modeling of spatial extremes. Stat. Sci. 27(2), 161–186 (2012)

    MathSciNet  Article  Google Scholar 

  • Ferreira, A., De Haan, L.: The generalized Pareto process; with a view towards application and simulation. Bernoulli 20(4), 1717–1737 (2014)

    MathSciNet  Article  Google Scholar 

  • Fine, M., Cinar, M., Voolstra, C. R., Safa, A., Rinkevich, B., Laffoley, D., Hilmi, N., Allemand, D.: Coral reefs of the Red Sea - challenges and potential solutions. Regional Studies in Marine Science 25, 100–498 (2019)

    Article  Google Scholar 

  • Frigessi, A., Haug, O., Rue, H.: A dynamic mixture model for unsupervised tail estimation without threshold selection. Extremes 5(3), 219–235 (2002)

    MathSciNet  Article  Google Scholar 

  • Gneiting, T., Ranjan, R.: Comparing density forecasts using threshold- and quantile-weighted scoring rules. Journal of Business & Economic Statistics 29(3), 411–422 (2011)

    MathSciNet  Article  Google Scholar 

  • Hazra, A., Huser, R. arXiv:1912.05657 (2020)

  • Heffernan, J. E., Tawn, J. A.: A conditional approach for multivariate extreme values (with discussion). Journal of the Royal Statistical Society Series B (Statistical Methodology) 66(3), 497–546 (2004)

    MathSciNet  Article  Google Scholar 

  • Huser, R.: Editorial: EVA 2019 data competition on spatio-temporal prediction of Red Sea surface temperature extremes. Extremes (To Appear) (2020)

  • Huser, R., Davison, A. C.: Space-time modelling of extreme events. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 76(2), 439–461 (2014)

    MathSciNet  Article  Google Scholar 

  • Huser, R., Opitz, T., Thibaud, E.: Bridging asymptotic independence and dependence in spatial extremes using Gaussian scale mixtures. Spatial Statistics 21(A), 166–186 (2017)

    MathSciNet  Article  Google Scholar 

  • Lilliefors, H. W.: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62(318), 399–402 (1967)

    Article  Google Scholar 

  • MacDonald, A., Scarrott, C. J., Lee, D., Darlow, B., Reale, M., Russell, G.: A flexible extreme value mixture model. Computational Statistics & Data Analysis 55(6), 2137–2157 (2011)

    MathSciNet  Article  Google Scholar 

  • Matheron, G.: Principles of geostatistics. Econ. Geol. 58(8), 1246–1266 (1963)

    Article  Google Scholar 

  • Morris, S. A., Reich, B. J., Thibaud, E., Cooley, D.: A space-time skew-t model for threshold exceedances. Biometrics 73(3), 749–758 (2017)

    MathSciNet  Article  Google Scholar 

  • Opitz, T.: Modeling asymptotically independent spatial extremes based on Laplace random fields. Spatial Statistics 16, 1–18 (2016)

    MathSciNet  Article  Google Scholar 

  • Picheny, V., Ginsbourger, D., Roustant, O.: with contributions by M. Binois, Chevalier, C., Marmin, S., and Wagner, T. (2016). DiceOptim: Kriging-Based Optimization for Computer Experiments. R package version 2.0

  • Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat. 3(1), 119–131 (1975)

    MathSciNet  Article  Google Scholar 

  • Rohrbeck, C., Eastoe, E. F., Frigessi, A., Tawn, J. A.: Extreme value modelling of water-related insurance claims. The Annals of Applied Statistics 12(1), 246–282 (2018)

    MathSciNet  Article  Google Scholar 

  • Schlather, M.: Models for stationary max-stable random fields. Extremes 5, 33–44 (2002)

    MathSciNet  Article  Google Scholar 

  • Simpson, E. S., Wadsworth, J. L. arXiv:2002.04362(2020)

  • Smith, R L.: Max-stable processes and spatial extremes. Unpublished (1990)

  • Tawn, J. A., Shooter, R., Towe, R. P., Lamb, R.: Modelling spatial extreme events with environmental applications. Spatial Statistics 28, 39–58 (2018)

    MathSciNet  Article  Google Scholar 

  • Thibaud, E., Aalto, J., Cooley, D. S., Davison, A. C., Heikkinen, J.: Bayesian inference for the Brown-Resnick process, with an application to extreme low temperatures. The Annals of Applied Statistics 10(4), 2303–2324 (2016)

    MathSciNet  Article  Google Scholar 

  • Towe, R. P., Eastoe, E. F., Tawn, J. A., Jonathan, P.: Statistical downscaling for future extreme wave heights in the North Sea. The Annals of Applied Statistics 11(4), 2375–2403 (2017)

    MathSciNet  Article  Google Scholar 

  • Wadsworth, J. L., Tawn, J. A. arXiv:1912.06560 (2019)

  • Wikle, C. K., Zammit-Mangion, A., Cressie, N.: Spatio-Temporal Statistics with R. Chapman & Hall/CRC Boca Ration Fl (2019)

  • Winter, H. C., Tawn, J. A., Brown, S. J.: Modelling the effect of the El Niño-S,outhern Oscillation on extreme spatial temperature events over Australia. The Annals of Applied Statistics 10(4), 2075–2101 (2016)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the referees and Associate Editor for their helpful comments. Christian Rohrbeck is beneficiary of an AXA Research Fund postdoctoral grant. Emma Simpson’s work is supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-CRG2017-3434. Ross Towe is supported by Engineering and Physical Sciences Research Council (Grant Number: EP/P002285/1) ‘The Role of Digital Technology in Understanding, Mitigating and Adapting to Environmental Change’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rohrbeck.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Empirical analysis of the spatial and extremal spatial dependence

We produce variograms and F-madograms for the four sub-regions in Fig. 4. The left column in Fig. 5 shows that spatial dependence varies across sub-regions. Furthermore, there appears to be a temporal variation in the spatial dependence for two of the sub-regions. The right column of Fig. 4 indicates that the extremal spatial dependence exhibits less spatial variation than the overall spatial dependence. Furthermore, the plots demonstrate slight changes in the extremal spatial dependence, but not as strong as for the overall spatial dependence.

Fig. 4
figure 4

Subregions used to explore spatial and extremal dependence

Fig. 5
figure 5

Variograms (left) and F-Madograms (right) for the four subregions in Fig. 4. The black curve corresponds to the time horizon t = 1, … , 5000, and the grey curve corresponds to the period t = 5001, … , 11315. The dashed lines are the central 80% confidence intervals

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rohrbeck, C., Simpson, E.S. & Towe, R.P. A spatio-temporal model for Red Sea surface temperature anomalies. Extremes 24, 129–144 (2021). https://doi.org/10.1007/s10687-020-00383-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-020-00383-2

Keywords

  • Extreme value analysis
  • Gaussian processes
  • Red Sea
  • Spatio-temporal dependence

AMS 2000 Subject Classifications

  • 62H11
  • 62P12
  • 62M30