Allison, E. H., Perry, A. L., Badjeck, M.-C., Adger, W. N., Brown, K., Conway, D., Halls, A. S., Pilling, G. M., Reynolds, J. D., Andrew, N. L., Dulvy, N. K.: Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 10(2), 173–196 (2009)
Article
Google Scholar
Behrens, C. N., Lopes, H. F., Gamerman, D.: Bayesian analysis of extreme events with threshold estimation. Stat. Model. 4(3), 227–244 (2004)
MathSciNet
Article
Google Scholar
Brander, K.: Impacts of climate change on fisheries. J. Mar. Syst. 79(3-4), 389–402 (2010)
Article
Google Scholar
Coles, S. G.: An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer-Verlag London (2001)
Cooley, D., Naveau, P., Poncet, P.: Variograms for spatial max-stable random fields. In: Bertail, P., Sourlier, P., Doukhan, P. (eds.) Dependence in Probability and Statistics, pages 373–390. Springer (2006)
Cooley, D., Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102(479), 824–840 (2007)
MathSciNet
Article
Google Scholar
Cressie, N., Wikle, C. K.: Statistics for Spatio-Temporal Data John Wiley & Sons (2011)
Davis, R. A., Klüppelberg, C., Steinkohl, C.: Statistical inference for max-stable processes in space and time. Journal of the Royal Statistical Society Series B (Statistical Methodology) 75(5), 791–819 (2013)
MathSciNet
Article
Google Scholar
Davison, A. C., Huser, R.: Statistics of extremes. Annual Review of Statistics and its Application 2, 203–235 (2015)
Article
Google Scholar
Davison, A. C., Huser, R., Thibaud, E.: Spatialextremes. In: Gelfand, A.E., Fuentes, M., Hoeting, J.A., Smith, R.L. (eds.) Handbook of Environmental and Ecological Statistics. CRC Press (2019)
Davison, A.C., Padoan, S.A., Ribatet, M.: Statistical modeling of spatial extremes. Stat. Sci. 27(2), 161–186 (2012)
MathSciNet
Article
Google Scholar
Ferreira, A., De Haan, L.: The generalized Pareto process; with a view towards application and simulation. Bernoulli 20(4), 1717–1737 (2014)
MathSciNet
Article
Google Scholar
Fine, M., Cinar, M., Voolstra, C. R., Safa, A., Rinkevich, B., Laffoley, D., Hilmi, N., Allemand, D.: Coral reefs of the Red Sea - challenges and potential solutions. Regional Studies in Marine Science 25, 100–498 (2019)
Article
Google Scholar
Frigessi, A., Haug, O., Rue, H.: A dynamic mixture model for unsupervised tail estimation without threshold selection. Extremes 5(3), 219–235 (2002)
MathSciNet
Article
Google Scholar
Gneiting, T., Ranjan, R.: Comparing density forecasts using threshold- and quantile-weighted scoring rules. Journal of Business & Economic Statistics 29(3), 411–422 (2011)
MathSciNet
Article
Google Scholar
Hazra, A., Huser, R. arXiv:1912.05657 (2020)
Heffernan, J. E., Tawn, J. A.: A conditional approach for multivariate extreme values (with discussion). Journal of the Royal Statistical Society Series B (Statistical Methodology) 66(3), 497–546 (2004)
MathSciNet
Article
Google Scholar
Huser, R.: Editorial: EVA 2019 data competition on spatio-temporal prediction of Red Sea surface temperature extremes. Extremes (To Appear) (2020)
Huser, R., Davison, A. C.: Space-time modelling of extreme events. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 76(2), 439–461 (2014)
MathSciNet
Article
Google Scholar
Huser, R., Opitz, T., Thibaud, E.: Bridging asymptotic independence and dependence in spatial extremes using Gaussian scale mixtures. Spatial Statistics 21(A), 166–186 (2017)
MathSciNet
Article
Google Scholar
Lilliefors, H. W.: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62(318), 399–402 (1967)
Article
Google Scholar
MacDonald, A., Scarrott, C. J., Lee, D., Darlow, B., Reale, M., Russell, G.: A flexible extreme value mixture model. Computational Statistics & Data Analysis 55(6), 2137–2157 (2011)
MathSciNet
Article
Google Scholar
Matheron, G.: Principles of geostatistics. Econ. Geol. 58(8), 1246–1266 (1963)
Article
Google Scholar
Morris, S. A., Reich, B. J., Thibaud, E., Cooley, D.: A space-time skew-t model for threshold exceedances. Biometrics 73(3), 749–758 (2017)
MathSciNet
Article
Google Scholar
Opitz, T.: Modeling asymptotically independent spatial extremes based on Laplace random fields. Spatial Statistics 16, 1–18 (2016)
MathSciNet
Article
Google Scholar
Picheny, V., Ginsbourger, D., Roustant, O.: with contributions by M. Binois, Chevalier, C., Marmin, S., and Wagner, T. (2016). DiceOptim: Kriging-Based Optimization for Computer Experiments. R package version 2.0
Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat. 3(1), 119–131 (1975)
MathSciNet
Article
Google Scholar
Rohrbeck, C., Eastoe, E. F., Frigessi, A., Tawn, J. A.: Extreme value modelling of water-related insurance claims. The Annals of Applied Statistics 12(1), 246–282 (2018)
MathSciNet
Article
Google Scholar
Schlather, M.: Models for stationary max-stable random fields. Extremes 5, 33–44 (2002)
MathSciNet
Article
Google Scholar
Simpson, E. S., Wadsworth, J. L. arXiv:2002.04362(2020)
Smith, R L.: Max-stable processes and spatial extremes. Unpublished (1990)
Tawn, J. A., Shooter, R., Towe, R. P., Lamb, R.: Modelling spatial extreme events with environmental applications. Spatial Statistics 28, 39–58 (2018)
MathSciNet
Article
Google Scholar
Thibaud, E., Aalto, J., Cooley, D. S., Davison, A. C., Heikkinen, J.: Bayesian inference for the Brown-Resnick process, with an application to extreme low temperatures. The Annals of Applied Statistics 10(4), 2303–2324 (2016)
MathSciNet
Article
Google Scholar
Towe, R. P., Eastoe, E. F., Tawn, J. A., Jonathan, P.: Statistical downscaling for future extreme wave heights in the North Sea. The Annals of Applied Statistics 11(4), 2375–2403 (2017)
MathSciNet
Article
Google Scholar
Wadsworth, J. L., Tawn, J. A. arXiv:1912.06560 (2019)
Wikle, C. K., Zammit-Mangion, A., Cressie, N.: Spatio-Temporal Statistics with R. Chapman & Hall/CRC Boca Ration Fl (2019)
Winter, H. C., Tawn, J. A., Brown, S. J.: Modelling the effect of the El Niño-S,outhern Oscillation on extreme spatial temperature events over Australia. The Annals of Applied Statistics 10(4), 2075–2101 (2016)
MathSciNet
Article
Google Scholar