, Volume 21, Issue 2, pp 177–204 | Cite as

Extremes of projections of functional time series on data–driven basis systems

  • Piotr Kokoszka
  • Qian Xiong


The paper is concerned with the extreme behavior of projections of time series of functions onto data-driven basis systems, for example, on the estimated functional principal components. The coefficients of these projections, called the scores, encode the shapes of the curves. Within the framework of functional data analysis, the extreme shapes are those corresponding to multivariate extremes of the scores. The scores are not directly observable, and must be computed from the data. Even for iid Gaussian functions, they form a triangular array of dependent non–Gaussian vectors. Thus, even though the extreme behavior of the population scores of Gaussian functions follows from well–known results, it is not clear what the extreme behavior of their approximations computed from the data is. We clarify these issues for Gaussian functions and for more general functional time series whose projections are in the Gumbel domain of attraction.


Extreme values Functional data Gumbel distribution Time series 

AMS 2000 Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was partially supported by NSF grant DMS 1462067 “FRG: Collaborative Research: Extreme Value Theory for Spatially Indexed Functional Data”. We thank Professor Haonan Wang for useful advice on elements of the proof in the Gaussian case, and two referees for valuable advice on both presentation and substance.


  1. Aue, A., Hörmann, S., Horváth, L., Reimherr, M.: Break detection in the covariance structure of multivariate time series models. Ann. Stat. 37, 4046–4087 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Barbe, P.h., McCormick, W.P.: Second-order expansion for the maximum of some stationary gaussian sequences. Stochastic Processes and their Applications 110, 315–342 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of extremes: theory and applications. Wiley, New York (2006)zbMATHGoogle Scholar
  4. Dauxois, J., Pousse, A., Romain, Y.: Asymptotic theory for principal component analysis of a vector random function. J. Multivar. Anal. 12, 136–154 (1982)CrossRefzbMATHGoogle Scholar
  5. Davis, R.A., Resnick, S.I.: Tail estimates motivated by extreme value theory. Ann. Stat. 12, 1467–1487 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling extremal events for insurance and finance. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  7. Gumbel, E.J.: Statistics of extremes. Courier Corporation, North Chelmsford (2012)zbMATHGoogle Scholar
  8. de Haan, L., Ferreira, A.: Extreme value theory: an introduction. Springer, Berlin (2006)CrossRefzbMATHGoogle Scholar
  9. Hörmann, S., Kidziński, L., Hallin, M.: Dynamic functional principal components. J. R. Stat. Soc. (B) 77, 319–348 (2015)MathSciNetCrossRefGoogle Scholar
  10. Hörmann, S., Kokoszka, P.: Weakly dependent functional data. Ann. Stat. 38, 1845–1884 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Horváth, L., Kokoszka, P.: Inference for functional data with applications. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  12. Horváth, L., Kokoszka, P., Reeder, R.: Estimation of the mean of functional time series and a two sample problem. J. R. Stat. Soc. (B) 75, 103–122 (2013)MathSciNetCrossRefGoogle Scholar
  13. Hsing, T., Eubank, R.: Theoretical foundations of functional data analysis, with an introduction to linear operators. Wiley, New York (2015)CrossRefzbMATHGoogle Scholar
  14. Hsing, T., Hüsler, J., Reiss, R.-D.: The extremes of a triangular array of normal random variables. Ann. Appl. Probab. 6, 671–686 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Kokoszka, P., Reimherr, M.: Asymptotic normality of the principal components of functional time series. Stoch. Process. Appl. 123, 1546–1562 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Kokoszka, P., Reimherr, M.: Introduction to functional data analysis. CRC Press, Boca Raton (2017)zbMATHGoogle Scholar
  17. Leadbetter, M.R., Lindgren, G., Rootzen, H.: Extremes and related properties of random sequences and processes. Springer Series in Statistics. Springer, Boca Raton (1983)CrossRefzbMATHGoogle Scholar
  18. Ramsay, J.O., Silverman, B.W.: Functional data analysis. Springer, Berlin (2005)CrossRefzbMATHGoogle Scholar
  19. Resnick, S.I.: Extreme values, regular variation, and point processes. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  20. Rootzén, H.: The rate of convergence of extremes of stationary normal sequences. Adv. Appl. Probab. 15, 54–80 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Shao, X., Wu, W.B.: Asymptotic spectral theory for nonlinear time series. Ann. Stat. 35, 1773–1801 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Vakhaniia, N.N., Tarieladze, V.I., Chobanian, S.A.: Probability distributions on banach spaces. Springer, Berlin (1987)CrossRefGoogle Scholar
  23. Wu, W.B.: Strong invariance principles for dependent random variables. Ann. Probab. 35, 2294–2320 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Zhang, X.: White noise testing and model diagnostic checking for functional time series. J. Econ. 194, 76–95 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Colorado State UniversityFort CollinsUSA

Personalised recommendations