Skip to main content
Log in

Amplitude Mean of Functional Data on \(\mathbb {S}^2\) and its Accurate Computation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Manifold-valued functional data analysis (FDA) has become an active area of research motivated by the rising availability of trajectories or longitudinal data observed on nonlinear manifolds. The challenges of analyzing such data come from many aspects, including infinite dimensionality and nonlinearity, as well as time domain or phase variability. In this paper, we study the amplitude part of manifold-valued functions on \(\mathbb {S}^2\), which is invariant to random time warping or re-parameterization. We represent a smooth function on \(\mathbb {S}^2\) using a pair of components: a starting point and a transported square-root velocity curve (TSRVC). Under this representation, the space of all smooth functions on \(\mathbb {S}^2\) forms a vector bundle, and the simple \(L_2\) norm becomes a time-warping invariant metric on this vector bundle. Utilizing the nice geometry of \(\mathbb {S}^2\), we develop a set of efficient and accurate tools for temporal alignment of functions, geodesic computing, and sample mean and covariance calculation. At the heart of these tools, they rely on gradient descent algorithms with carefully derived gradients. We show the advantages of these newly developed tools over its competitors with extensive simulations and real data and demonstrate the importance of considering the amplitude part of functions instead of mixing it with phase variability in manifold-valued FDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Afsari, B.: Riemannian \({L}^p\) center of mass: existence, uniqueness, and convexity. Proc. Am. Math. Soc. 139(2), 655–673 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bacák, M.: Convex Analysis and Optimization in Hadamard Spaces. de Gruyter (2014)

  3. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 1st edn. Athena Scientific (1995)

  4. Bhattacharya, R., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds: II. Annals of Statistics pp. 1225–1259 (2005)

  5. Bowman, A.: Functional data analysis with R and MATLAB. J. Stat. Soft. 34(1), 1–2 (2010)

    Google Scholar 

  6. Brigant, A.L.: Computing distances and geodesics between manifold-valued curves in the SRV framework. J. Geom. Mec. 9(2), 131–156 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferraty, F., Vieu, P.: Nonparametric Funct. Data Anal: Methods, Theory. Springer, Applications and Implementations (2006)

    MATH  Google Scholar 

  8. Gervini, D., Gasser, T.: Self-modelling warping functions. J. Royal Stat. Soc: Series B 66(4), 959–971 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Groisser, D.: Newton’s method, zeroes of vector fields, and the Riemannian center of mass. Adv. Appl. Math. 33, 95–135 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hsing, T., Eubank, R.: Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators. Wiley Series in Probability and Statistics. Wiley (2015)

  11. James, G.M.: Curve alignment by moments. The Ann. Appl. Stat. 1(2), 480–501 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kneip, A., Gasser, T.: Stat. Tools Anal. Data Represent. Sample of Curves 20(3), 1266–1305 (1992)

    Google Scholar 

  13. Kochert, M.N., Fuller, M.R., Schueck, L.S., Bond, L., Bechard, M.J., Woodbridge, B., Holroyd, G.L., Martell, M.S., Banasch, U.: Migration Patterns, use of Stopover Areas, and Austral Summer Movements of Swainson’s Hawks. The Condor 113(1), 89–106 (2011)

    Article  Google Scholar 

  14. Landsea, C., Franklin, J.: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weather Rev. 141, 3576–3592 (2013)

    Article  Google Scholar 

  15. Le, H.: Locating Fréchet means with application to shape spaces. Adv. Appl. Prob. 33(2), 324–338 (2001)

    Article  MATH  Google Scholar 

  16. Le Brigant, A.: A discrete framework to find the optimal matching between manifold-valued curves. J. Math. Imaging and Vision 61(1), 40–70 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, Z., Yao, F.: Intrinsic Riemannian functional data analysis. Ann. Stat. 47(6), 3533–3577 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, X., Müller, H.G.: Functional convex averaging and synchronization for time-warped random curves. J. Am. Stat. Asso. 99(467), 687–699 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Y., Shang, F., Cheng, J., Cheng, H., Jiao, L.: Accelerated first-order methods for geodesically convex optimization on Riemannian manifolds. In: Advances in Neural Information Processing Systems, pp. 4868–4877 (2017)

  20. Marron, J.S., Ramsay, J.O., Sangalli, L.M., Srivastava, A.: Statistics of time warpings and phase variations. Electron. J. Stat. 8(2), 1697–1702 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Michor, P., Mumford, D.: Riemannian geometries on spaces of plane curves. J. European Math. Soc. 8, 1–48 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmonic Anal. 23(1), 74–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Michor, P.W., Mumford, D.K.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Müller, H.G., Stadtmüller, U.: Generalized functional linear models. Ann. Stat. 33(2), 774–805 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pennec, X.: Computing the mean of geometric features application to the mean rotation. Ph.D. thesis, INRIA (1998)

  26. Ramsay, J.O., Dalzell, C.J.: Some tools for functional data analysis. J. Royal Stat. Soc: Ser. B 53(3), 539–572 (1991)

    MathSciNet  MATH  Google Scholar 

  27. Ramsay, J.O., Li, X.: Curve registration. J. Royal Stat. Soc.: Ser. B 60(2), 351–363 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ramsay, J.O., Silverman, B.W.: Func. Data Anal. Springer-Verlag, New York (2005)

    Book  Google Scholar 

  29. Ramsay, J.O., Silverman, B.W.: Appl. Func. Data Anal: Meth. Case Stud. Springer-Verlag, New York (2007)

    Google Scholar 

  30. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Transact. Acoust. Speech. Signal Process. 26, 43–49 (1978)

    Article  MATH  Google Scholar 

  31. Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1415–1428 (2011)

    Article  Google Scholar 

  32. Su, J., Kurtek, S., Klassen, E., Srivastava, A.: Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance. Ann. Appl. Stat. 8(1), 530–552 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sundaramoorthi, G., Yezzi, A., Mennucci, A.: Sobolev active contours. Inter. J. Comput. Vision 73, 109–120 (2005)

    MATH  Google Scholar 

  34. Wang, K., Gasser, T.: Alignment of curves by dynamic time warping. Ann. Stat. 25(3), 1251–1276 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58, 565–586 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, H., Sra, S.: First-order methods for geodesically convex optimization. In: Conference on Learning Theory, pp. 1617–1638 (2016)

  37. Zhang, Z., Klassen, E., Srivastava, A.: Phase-amplitude separation and modeling of spherical trajectories. J. Comput. Graph. Stat. 27(1), 85–97 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, Z., Su, J., Klassen, E., Le, H., Srivastava, A.: Rate-invariant analysis of covariance trajectories. J. Math. Imaging and Vision 60(8), 1306–1323 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengwu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 565 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Saparbayeva, B. Amplitude Mean of Functional Data on \(\mathbb {S}^2\) and its Accurate Computation. J Math Imaging Vis 64, 1010–1028 (2022). https://doi.org/10.1007/s10851-022-01109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-022-01109-8

Keywords

Navigation