Andersen, C.F., et al.: The New Orleans Hurricane Protection System: What Went Wrong and Why. A Report by the ASCE Hurricane Katrina External Review Panel. American Society of Civil Engineers (2007)
Aulbach, S., Bayer, V., Falk, M., et al.: A multivariate piecing-together approach with an application to operational loss data. Bernoulli 18(2), 455–475 (2012)
MathSciNet
Article
MATH
Google Scholar
Balkema, A.A., de Haan, L.: Residual life time at great age. Ann. Probab. 2(5), 792–804 (1974)
Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applications. John Wiley & Sons (2004)
Brodin, E., Rootzén, H.: Univariate and bivariate GPD methods for predicting extreme wind storm losses. Insurance: Math. Econ. 44(3), 345–356 (2009)
MathSciNet
MATH
Google Scholar
Chib, S., Greenberg, E.: Understanding the Metropolis-Hastings algorithm. Am. Stat. 49(4), 327–335 (1995)
Google Scholar
Coles, S.G.: An Introduction to Statistical Modeling of Extreme Values. Springer (2001)
Coles, S.G., Tawn, J.A.: Modelling extreme multivariate events. J. R. Stat. Soc. Ser. B (Stat Methodol.) 53(2), 377–392 (1991)
MathSciNet
MATH
Google Scholar
Davison, A.C., Padoan, S.A., Ribatet, M.: Statistical modeling of spatial extremes. Stat. Sci. 27(2), 161–186 (2012)
MathSciNet
Article
MATH
Google Scholar
Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds. J. R. Stat. Soc. Ser. B (Stat Methodol.) 52(3), 393–442 (1990)
MathSciNet
MATH
Google Scholar
de Fondeville, R., Davison, A.C.: High-dimensional peaks-over-threshold inference for the Brown–Resnick process. arXiv:1605.08558(2016)
de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer (2006)
de Haan, L., Neves, C., Peng, L.: Parametric tail copula estimation and model testing. J. Multivar. Anal. 99(6), 1260–1275 (2008)
Dey, D.K., Yan, J., Extreme Value Modeling and Risk Analysis: Methods and Applications. Chapman and Hall/CRC (2015)
Einmahl, J., Kiriliouk, A., Krajina, A., Segers, J.: An M-estimator of spatial tail dependence. J. R. Stat. Soc. Ser. B (Stat Methodol.) 78(1), 275–298 (2016)
MathSciNet
Article
Google Scholar
Einmahl, J.H.J., Krajina, A., Segers, J.: An M-estimator for tail dependence in arbitrary dimensions. Ann. Stat. 40(3), 1764–1793 (2012)
MathSciNet
Article
MATH
Google Scholar
Falk, M., Hüsler, J., Reiss, R.-D.: Laws of Small Numbers: Extremes and Rare Events. Springer Science & Business Media (2010)
Ferreira, A., de Haan, L.: The generalized Pareto process; with a view towards application and simulation. Bernoulli 20(4), 1717–1737 (2014)
Grynszpan, D.: Lessons from the french heatwave. Lancet 362, 1169–1170 (2003)
Article
Google Scholar
Guzzetti, F., Peruccacci, S., Rossi, M., Stark, C.: Rainfall thresholds for the initiation of landslides in Central and Southern Europe. Meteorol. Atmos. Phys., 239–267 (2007)
Huser, R., Davison, A.: Composite likelihood estimation for the Brown–Resnick process. Biometrika 100(2), 511–518 (2013)
MathSciNet
Article
MATH
Google Scholar
Huser, R., Davison, A.C., Genton, M.G.: Likelihood estimators for multivariate extremes. Extremes 19(1), 79–103 (2015)
MathSciNet
Article
MATH
Google Scholar
Joe, H., Smith, R.L., Weissman, I.: Bivariate threshold methods for extremes. J. R. Stat. Soc. Ser. B Methodol. 54(1), 171–183 (1992)
MathSciNet
MATH
Google Scholar
Katz, R.W., Parlange, M.B., Naveau, P.: Statistics of extremes in hydrology. Adv. Water Resour. 25(1), 1287–1304 (2002)
Article
Google Scholar
Kiriliouk, A., Rootzén, H., Segers, J., Wadsworth, J.: Peaks over thresholds modelling with multivariate generalized Pareto distributions. arXiv:1612.01773 (2016)
Kyselý, J., Picek, J., Beranová, R.: Estimating extremes in climate change simulations using the peaks-over-threshold method with a non-stationary threshold. Global Planet. Change 72(1–2), 55–68 (2010)
Article
Google Scholar
Marshall, A.W., Olkin, I.: Domains of attraction of multivariate extreme value distributions. Ann. Probab. 11(1), 168–177 (1983)
MathSciNet
Article
MATH
Google Scholar
McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts Techniques and Tools. Princeton University Press, Princeton (2015)
MATH
Google Scholar
Michel, R.: Parametric estimation procedures in multivariate generalized Pareto models. Scand. J. Stat. 36(1), 60–75 (2009)
MathSciNet
MATH
Google Scholar
NERC: Flood Studies Report. Natural Environment Research Council, London (1975)
Google Scholar
Penrose, M.D.: Semi-minstable processes. Ann. Probab. 20(3), 1450–1463 (1992)
MathSciNet
Article
MATH
Google Scholar
Pickands, J. III: Statistical inference using extreme order statistics. Ann. Stat. 3(1), 119–131 (1975)
MathSciNet
Article
MATH
Google Scholar
Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Springer (1987)
Resnick, S.I.: Heavy-Tail Phenomena, Probabilistic and Statistical Modelling. Springer (2007)
Rootzén, H., Tajvidi, N.: Multivariate generalized Pareto distributions. Bernoulli 12(5), 917–930 (2006)
MathSciNet
Article
MATH
Google Scholar
Schlather, M.: Models for stationary max-stable fields. Extremes 5(1), 61–82 (2002)
MathSciNet
MATH
Google Scholar
Smith, R.L.: Threshold methods for sample extremes. In: de Oliveira, J.T. (ed.) Statistical extremes and applications, pp 621–638. D. Reidl, Dordrecht (1984)
Smith, R.L., Tawn, J.A., Coles, S.G.: Markov chain models for threshold exceedances. Biometrika 84(2), 249–268 (1997)
MathSciNet
Article
MATH
Google Scholar
Tajvidi, N.: Characterisation and Some Statistical Aspects of Univariate and Multivariate Generalized Pareto Distributions. Ph. D. thesis Department of Mathematics. Chalmers University of Technology, Göteborg (1996)
Google Scholar
Wadsworth, J., Tawn, J.: Efficient inference for spatial extreme value processes associated to log-Gaussian random functions. Biometrika 101(1), 1–15 (2014)
MathSciNet
Article
MATH
Google Scholar