Advertisement

Extremes

, Volume 21, Issue 1, pp 115–145 | Cite as

Multivariate peaks over thresholds models

  • Holger Rootzén
  • Johan Segers
  • Jennifer L. Wadsworth
Open Access
Article

Abstract

Multivariate peaks over thresholds modelling based on generalized Pareto distributions has up to now only been used in few and mostly two-dimensional situations. This paper contributes theoretical understanding, models which can respect physical constraints, inference tools, and simulation methods to support routine use, with an aim at higher dimensions. We derive a general point process model for extreme episodes in data, and show how conditioning the distribution of extreme episodes on threshold exceedance gives four basic representations of the family of generalized Pareto distributions. The first representation is constructed on the real scale of the observations. The second one starts with a model on a standard exponential scale which is then transformed to the real scale. The third and fourth representations are reformulations of a spectral representation proposed in Ferreira and de Haan (Bernoulli 20(4), 1717–1737, 2014). Numerically tractable forms of densities and censored densities are found and give tools for flexible parametric likelihood inference. New simulation algorithms, explicit formulas for probabilities and conditional probabilities, and conditions which make the conditional distribution of weighted component sums generalized Pareto are derived.

Keywords

Extreme values Multivariate generalized Pareto distribution Peaks over threshold likelihoods Simulation of extremes 

AMS 2000 Subject Classifications

62G32 60G70 62E10 

Notes

Acknowledgments

Anna Kiriliouk has throughout participated in the discussions leading to this paper. We thank her and two referees for many helpful comments. Research supported by the Knut and Alice Wallenberg foundation. Johan Segers was funded by contract “Projet d’Actions de Recherche Concertées” No. 12/17-045 of the “Communauté française de Belgique” and by IAP research network Grant P7/06 of the Belgian government.

References

  1. Andersen, C.F., et al.: The New Orleans Hurricane Protection System: What Went Wrong and Why. A Report by the ASCE Hurricane Katrina External Review Panel. American Society of Civil Engineers (2007)Google Scholar
  2. Aulbach, S., Bayer, V., Falk, M., et al.: A multivariate piecing-together approach with an application to operational loss data. Bernoulli 18(2), 455–475 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. Balkema, A.A., de Haan, L.: Residual life time at great age. Ann. Probab. 2(5), 792–804 (1974)Google Scholar
  4. Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applications. John Wiley & Sons (2004)Google Scholar
  5. Brodin, E., Rootzén, H.: Univariate and bivariate GPD methods for predicting extreme wind storm losses. Insurance: Math. Econ. 44(3), 345–356 (2009)MathSciNetMATHGoogle Scholar
  6. Chib, S., Greenberg, E.: Understanding the Metropolis-Hastings algorithm. Am. Stat. 49(4), 327–335 (1995)Google Scholar
  7. Coles, S.G.: An Introduction to Statistical Modeling of Extreme Values. Springer (2001)Google Scholar
  8. Coles, S.G., Tawn, J.A.: Modelling extreme multivariate events. J. R. Stat. Soc. Ser. B (Stat Methodol.) 53(2), 377–392 (1991)MathSciNetMATHGoogle Scholar
  9. Davison, A.C., Padoan, S.A., Ribatet, M.: Statistical modeling of spatial extremes. Stat. Sci. 27(2), 161–186 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds. J. R. Stat. Soc. Ser. B (Stat Methodol.) 52(3), 393–442 (1990)MathSciNetMATHGoogle Scholar
  11. de Fondeville, R., Davison, A.C.: High-dimensional peaks-over-threshold inference for the Brown–Resnick process. arXiv:1605.08558(2016)
  12. de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer (2006)Google Scholar
  13. de Haan, L., Neves, C., Peng, L.: Parametric tail copula estimation and model testing. J. Multivar. Anal. 99(6), 1260–1275 (2008)Google Scholar
  14. Dey, D.K., Yan, J., Extreme Value Modeling and Risk Analysis: Methods and Applications. Chapman and Hall/CRC (2015)Google Scholar
  15. Einmahl, J., Kiriliouk, A., Krajina, A., Segers, J.: An M-estimator of spatial tail dependence. J. R. Stat. Soc. Ser. B (Stat Methodol.) 78(1), 275–298 (2016)MathSciNetCrossRefGoogle Scholar
  16. Einmahl, J.H.J., Krajina, A., Segers, J.: An M-estimator for tail dependence in arbitrary dimensions. Ann. Stat. 40(3), 1764–1793 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. Falk, M., Hüsler, J., Reiss, R.-D.: Laws of Small Numbers: Extremes and Rare Events. Springer Science & Business Media (2010)Google Scholar
  18. Ferreira, A., de Haan, L.: The generalized Pareto process; with a view towards application and simulation. Bernoulli 20(4), 1717–1737 (2014)Google Scholar
  19. Grynszpan, D.: Lessons from the french heatwave. Lancet 362, 1169–1170 (2003)CrossRefGoogle Scholar
  20. Guzzetti, F., Peruccacci, S., Rossi, M., Stark, C.: Rainfall thresholds for the initiation of landslides in Central and Southern Europe. Meteorol. Atmos. Phys., 239–267 (2007)Google Scholar
  21. Huser, R., Davison, A.: Composite likelihood estimation for the Brown–Resnick process. Biometrika 100(2), 511–518 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. Huser, R., Davison, A.C., Genton, M.G.: Likelihood estimators for multivariate extremes. Extremes 19(1), 79–103 (2015)MathSciNetCrossRefMATHGoogle Scholar
  23. Joe, H., Smith, R.L., Weissman, I.: Bivariate threshold methods for extremes. J. R. Stat. Soc. Ser. B Methodol. 54(1), 171–183 (1992)MathSciNetMATHGoogle Scholar
  24. Katz, R.W., Parlange, M.B., Naveau, P.: Statistics of extremes in hydrology. Adv. Water Resour. 25(1), 1287–1304 (2002)CrossRefGoogle Scholar
  25. Kiriliouk, A., Rootzén, H., Segers, J., Wadsworth, J.: Peaks over thresholds modelling with multivariate generalized Pareto distributions. arXiv:1612.01773 (2016)
  26. Kyselý, J., Picek, J., Beranová, R.: Estimating extremes in climate change simulations using the peaks-over-threshold method with a non-stationary threshold. Global Planet. Change 72(1–2), 55–68 (2010)CrossRefGoogle Scholar
  27. Marshall, A.W., Olkin, I.: Domains of attraction of multivariate extreme value distributions. Ann. Probab. 11(1), 168–177 (1983)MathSciNetCrossRefMATHGoogle Scholar
  28. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts Techniques and Tools. Princeton University Press, Princeton (2015)MATHGoogle Scholar
  29. Michel, R.: Parametric estimation procedures in multivariate generalized Pareto models. Scand. J. Stat. 36(1), 60–75 (2009)MathSciNetMATHGoogle Scholar
  30. NERC: Flood Studies Report. Natural Environment Research Council, London (1975)Google Scholar
  31. Penrose, M.D.: Semi-minstable processes. Ann. Probab. 20(3), 1450–1463 (1992)MathSciNetCrossRefMATHGoogle Scholar
  32. Pickands, J. III: Statistical inference using extreme order statistics. Ann. Stat. 3(1), 119–131 (1975)MathSciNetCrossRefMATHGoogle Scholar
  33. Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Springer (1987)Google Scholar
  34. Resnick, S.I.: Heavy-Tail Phenomena, Probabilistic and Statistical Modelling. Springer (2007)Google Scholar
  35. Rootzén, H., Tajvidi, N.: Multivariate generalized Pareto distributions. Bernoulli 12(5), 917–930 (2006)MathSciNetCrossRefMATHGoogle Scholar
  36. Schlather, M.: Models for stationary max-stable fields. Extremes 5(1), 61–82 (2002)MathSciNetMATHGoogle Scholar
  37. Smith, R.L.: Threshold methods for sample extremes. In: de Oliveira, J.T. (ed.) Statistical extremes and applications, pp 621–638. D. Reidl, Dordrecht (1984)Google Scholar
  38. Smith, R.L., Tawn, J.A., Coles, S.G.: Markov chain models for threshold exceedances. Biometrika 84(2), 249–268 (1997)MathSciNetCrossRefMATHGoogle Scholar
  39. Tajvidi, N.: Characterisation and Some Statistical Aspects of Univariate and Multivariate Generalized Pareto Distributions. Ph. D. thesis Department of Mathematics. Chalmers University of Technology, Göteborg (1996)Google Scholar
  40. Wadsworth, J., Tawn, J.: Efficient inference for spatial extreme value processes associated to log-Gaussian random functions. Biometrika 101(1), 1–15 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Chalmers and Gothenburg UniversityGöteborgSweden
  2. 2.Université catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Lancaster UniversityLancasterUK

Personalised recommendations