Abstract
We describe a novel method of heavy tails estimation based on transformed score (t-score). Based on a new score moment method we derive the t-Hill estimator, which estimates the extreme value index of a distribution function with regularly varying tail. t-Hill estimator is distribution sensitive, thus it differs in e.g. Pareto and log-gamma case. Here, we study both forms of the estimator, i.e. t-Hill and t-lgHill. For both estimators we prove weak consistency in moving average settings as well as the asymptotic normality of t-lgHill estimator in iid setting. In cases of contamination with heavier tails than the tail of original sample, t-Hill outperforms several robust tail estimators, especially in small samples. A simulation study emphasizes the fact that the level of contamination is playing a crucial role. The larger the contamination, the better are the t-score moment estimates. The reason for this is the bounded t-score of heavy-tailed distributions (and, consequently, bounded influence functions of the estimators). We illustrate the developed methodology on a small sample data set of stake measurements from Guanaco glacier in Chile.
Article PDF
References
Abermann, J., Kinnard, C., MacDonell, S.: Albedo variations and the impact of clouds on glaciers in the Chilean semi-arid andes. J. Glaciol. 60(219), 183–191 (2014)
Alves, M.F.: A location invariant hill-type estimator. Extremes 4(3), 199–217 (2001)
Beran, J., Schell, D.: On robust tail index estimation. Comput. Stat. Data Anal. 56(11), 3430–3443 (2012). doi:10.1016/j.csda.2010.05.028
Beran, J., Schell, D., Stehlík, M.: The harmonic moment tail index estimator: asymptotic distribution and robustness. Ann. Inst. Stat. Math. 66, 193–220 (2014)
Billingsley, P.: Convergence of probability measures. John Wiley & Sons (2013)
Brilhante, M., Gomes, M., Pestana, D.: A simple generalization of the hill estimator. Comput. Stat. Data Anal. 57, 518–535 (2013)
Brzezinski, M.: Robust estimation of the pareto tail index: a monte carlo analysis. Empir. Econ. (2015)
Cline, D.: Infinite Series of Random Variables with Regularly Varying Tails. Tech. Rep No 83-24. Institute of Applied Mathematics and Statistics, University of British Columbia (1983)
Dekkers, A.L., de Haan L.: On the estimation of the extreme-value index and large quantile estimation. Ann Statist 17(4), 1795–1832 (1989). doi:10.1214/aos/1176347396
Dekkers, A.L., Einmahl, J.H., de Haan, L.: A moment estimator for the index of an extreme-value distribution. Ann. Stat., 1833–1855 (1989)
Drees, H., de Haan, L., Resnick, S.: How to make a hill plot. Ann. Stat. 28, 254–274 (2000)
Dupuis, D.J., Morgenthaler, S.: Robust weighted likelihood estimators with an application to bivariate extreme value problems. The Canadian Journal of Statistics/La Revue Canadienne de Statistique, 17–36 (2002)
Dupuis, D.J., Victoria-Feser, M.P.: A robust prediction error criterion for pareto modelling of upper tails. Can. J. Stat. 34(4), 639–658 (2006)
Edgeworth, F.: On the probable errors of frequency constants. J. R. Stat. Soc. 71, 381–397 (1908a)
Edgeworth, F.: On the probable errors of frequency constants (contd). J. R. Stat. Soc. 71, 499–512 (1908b)
Embrechts, P., Klueppelberg C., Mikosch T.: Modeling extremal events for insurance and finance. Springer-Verlag (1997)
Fabián, Z.: Induced cores and their use in robust parametric estimation. Communication in Statistics Theory Methods 30, 537–556 (2001)
Fabián, Z.: Estimation of simple characteristics of samples from skewed and heavy-tailed distribution. Recent Advances in Stochastic Modeling and Data Analysis, 43–50 (2007)
Fabián, Z.: Score Moment Estimators. In: Lechavallier, Y., Saporta, G. (eds.) Proceedings of Conference COMPSTAT’2010. Springer, Physica-Verlag (2010)
Fabián, Z.: Score function of distribution and revival of the moment method. Communications in Statistics - Theory and Methods 0(ja), 00–00 (2015). doi:10.1080/03610926.2013.857688
Fabián, Z., Stehlík, M.: On robust and distribution sensitive hill like method. Tech. rep., IFAS Reasearch Paper Series 43(4) (2009)
Finkelstein, M., Tucker, H.G., Alan, V.J.: Pareto tail index estimation revisited. North American actuarial journal 10(1), 1–10 (2006)
Fisher, R.: Statistical Methods for Research Workers. Cosmo Publications (1925). http://books.google.at/books?id=4bTttAJR5kEC
Francou, B., Pouyaud, B.: Métodos De Observación De Glaciares En Los Andes Tropicales, Mediciones De Campo Y Procesamiento De Datos Versión 1. Great-Ice, IRD (2004)
Gascoin, S., Kinnard, C., Ponce, R., Macdonell, S., Lhermitte, S., Rabatel, A.: Glacier contribution to streamflow in two headwaters of the huasco river, dry andes of Chile. The Cryosphere 5, 1099–1113 (2011)
Geluk, J., de Haan, L., Resnick, S., Staarica, C.: Second-order regular variation, convolution and the central limit theorem. Stoch. Process. Appl. 69, 139–159 (1997)
Gomes, M.I., Oliveira, O.: Censoring estimators of a positive tail index. Statistics & Probability Letters 65, 147–159 (2003)
de Haan L.: On regular variation and its application to the weak convergence of sample extremes. Mathematisch Centrum (1970)
de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)
de Haan, L., Stadtmüller, U.: Generalized regular variation of second order. J. Aust. Math. Soc. 61, 381–395 (1996)
Hill, B.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3, 1163–1174 (1975)
Hosking, J.R., Wallis, J.R.: Parameter and quantile estimation for the generalized pareto distribution. Technometrics 29(3), 339–349 (1987)
Huber, P.J., Ronchetti, E.: Robust statistics, series in probability and mathematical statistics (1981)
Jordanova, P., Pancheva, E.: Weak asymptotic results for t-hill estimator. Comptes rendus de l’académie bulgare des sciences 65(12), 1649–1656 (2012)
Kratz, M., Resnick, S.I.: The qq-estimator and heavy tails. Stoch. Model. 12(4), 699–724 (1996)
Li, J., Peng, Z., Nadarajah, S.: Asymptotic normality of location invariant heavy tail index estimator. Extremes 13, 269–290 (2010)
Oyarzún, J., Oyarzún, R.: Sustainable development threats, inter-sector conflicts and environmental policy requirements in the arid, mining rich, northern Chile territory. Sustain. Dev. 19(4), 263–274 (2011)
Paulauskas, V., Vaiciulis, M.: On the improvement of hill and some other estimators. Lith. Math. J. 53(3), 336–355 (2013)
Pearson, K., Filon, L.: Mathematical contributions to the theory of evolution. iv. on the probable errors of frequency constants and on the influence of random selection on variation and correlation. Philosophical Transactions of the Royal Society of London A: Mathematical Physical and Engineering Sciences 191, 229–311 (1898). doi:10.1098/rsta.1898.0007
Rabatel, A., Castebrunet, H., Favier, V., Nicholson, L., Kinnard, C.: Glacier changes in the pascua-lama region, chilean andes (29 s): recent mass balance and 50 yr surface area variations. Cryosphere 5(4), 1029–1041 (2011)
Resnick, S., Starica, C.: Consistency of hill’s estimator for dependent data. Tech. rep., Technical report No. 1077, School of Operational Research and Industrial Engeneering Cornell University Itaca NY 14853 (1993)
Rousseeuw, F.H.E.R.P., Stahel, W.: Robust Statistics: the Approach Based on Influence Functions. J Wiley, New York (1986)
Schultze, J., Steinebach, J.: On least squares estimates of an exponential tail coefficient. Statistics & Risk Modeling 14(4), 353–372 (1996)
Stehlík, M., Hermann, P.: Letter to the editor. Ann. Appl. Stat. 9, 2051 (2015)
Stehlík, M., Potocký, R., Fabián, Z.: On the favourable estimation of fitting heavy tailed data. Comput. Stat. 25, 485–503 (2010a)
Stehlík, M., Potocký, R., Waldl H., Fabián, Z.: On the favourable estimation of fitting heavy tailed data. Tech. rep., IFAS res. report Nr. 32 JKU Linz (2010b)
Stehlík, M., Fabián, Z., Strelec, L.: Small sample robust testing for norMality against pareto tails. Communications in Statistics - Simulation and Computation 41, 1167–1194 (2012)
Vandewalle, B., Beirlant, J., Christmann, A., Hubert, M.: A robust estimator for the tail index of pareto-type distributions. Computational Statistics & Data Analysis 51, 6252–6268 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Jordanova, P., Fabián, Z., Hermann, P. et al. Weak properties and robustness of t-Hill estimators. Extremes 19, 591–626 (2016). https://doi.org/10.1007/s10687-016-0256-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10687-016-0256-2