Skip to main content
Log in

A mission to nature’s telescope for high-resolution imaging of an exoplanet

  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The solar gravitational lens (SGL) provides a factor of \(10^{11}\) amplification for viewing distant point sources beyond our solar system. As such, it may be used for resolved imaging of extended sources, such as exoplanets, not possible otherwise. To use the SGL, a spacecraft carrying a modest telescope and a coronagraph must reach the SGLs focal region, that begins at \(\sim \)550 astronomical units (AU) from the Sun and is oriented outward along the line connecting the distant object and the Sun. No spacecraft has ever reached even a half of that distance; and to do so within a reasonable mission lifetime (e.g., less than 25 years) and affordable cost requires a new type of mission design, using solar sails and microsats (\(<100\) kg). The payoff is high – using the SGL is the only practical way we can ever get a high-resolution, multi-pixel image of an Earth-like exoplanet, one that we identify as potentially habitable. This paper describes a novel mission design starting with a rideshare launch from the Earth, spiraling in toward the Sun, and then flying around it to achieve solar system exit speeds of over 20 AU/year. A new sailcraft design is used to make possible high area to mass ratio for the sailcraft. The mission design enables other fast solar system missions, starting with a proposed very low cost technology demonstration mission (TDM) to prove the functionality and operation of the microsat-solar sail design and then, building on the TDM, missions to explore distant regions of the solar system, and those to study Kuiper Belt objects (KBOs) and the recently discovered interstellar objects (ISOs) are also possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availibility Statement

No datasets were generated or analyzed during the current study.

Notes

  1. LSST is the Vera C. Rubin Observatory, https://www.lsst.org/

  2. European Extremely Large Telescope (ELT), first light in 2025, https://elt.eso.org/

  3. Thirty Meter Telescope (TMT), first light in 2027, https://www.tmt.org/

  4. Some preliminary analysis of exoplanet imaging with an optical telescope was presented in [21,22,23], see discussion in [8, 9, 12].

  5. Modern the chemical rocket cannot produce enough \(\Delta v\) for realistic spacecraft mass to go fast enough to reach the SGL focal region in \(\sim \)30 years. These powerful rocket engines, even many of them staged together, may produce \(\Delta v\) on the order of 13 AU/year at best.

  6. Rideshare is a term used when a small payload hitches a ride with a bigger payload thereby saving launch costs.

  7. A patented design invented by D. Garber of Xplore, Inc. and N. Barnes of L’Garde, Inc.

  8. https://jwst.nasa.gov/content/observatory/sunshield.html, https://www.vice.com/en/article/9akddp/this-sunshield-will-keep-the-most-powerful-space-telescope-ever-from-frying

  9. https://www.nasa.gov/sites/default/files/atoms/files/parkersolarprobe_presskit_august2018_final.pdf

References

  1. Turyshev, S.G., Toth, V.T.: ApJ. 944(1), 25 (2023)

    Article  ADS  Google Scholar 

  2. Einstein, A.: Annalen der Physik 49, 146 (1916)

    Google Scholar 

  3. Eddington, A.S.: The Observatory 42, 119 (1919)

    ADS  Google Scholar 

  4. Turyshev, S.G., Toth, V.T.: Phys. Rev. D 96, 024008 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Turyshev, S.G., Toth, V.T.: Phys. Rev. D 100, 084018 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Eshleman, V.R.: Science 205(4411), 1133 (1979)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Maccone, C.: Deep Space Flight and Communications Exploiting the Sun as a Gravitational Lens. Springer-Verlag, Berlin Heidelberg (2009)

    Book  Google Scholar 

  8. Turyshev, S.G., Toth, V.T.: Phys. Rev. D 102, 024038 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Turyshev, S.G., Toth, V.T.: MNRAS 515(4), 6122 (2022)

    Article  ADS  CAS  Google Scholar 

  10. Torres, G., Kipping, D.M., Fressin, F., Caldwell, D.A., Twicken, J.D., Ballard, S., Batalha, N.M., Bryson, S.T., Ciardi, D.R., Henze, C.E., Howell, S.B., Isaacson, H.T., Jenkins, J.M., Muirhead, P.S., Newton, E.R., Petigura, E.A., Barclay, T., Borucki, W.J., Crepp, J.R., Everett, M.E., Horch, E.P., Howard, A.W., Kolbl, R., Marcy, G.W., McCauliff, S., Quintana, E.V.: ApJ 800(2), 99 (2015)

    Article  ADS  Google Scholar 

  11. Turyshev, S.G.: Phys. Rev. D 95(8), 084041 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. Turyshev, S.G., Toth, V.T.: Phys. Rev D. 106(4), 044059 (2022)

    Article  ADS  CAS  Google Scholar 

  13. Maccone, C.: Acta Astronautica 68, 76 (2011)

    Article  ADS  Google Scholar 

  14. Koechlin, L., Serre, D., Skinner, G.K., Ballmoos, P.V., Crouzil, T.: Experimental Astronomy 20(1), 307 (2005)

    ADS  Google Scholar 

  15. Koechlin, L., Serre, D., Skinner, G.K., Ballmoos, P.V., Crouzil, T.: in Focusing Telescopes. In: von Ballmoos, P. (ed.) Nuclear Astrophysics, pp. 307–315. Springer, Netherlands, Dordrecht (2006)

    Google Scholar 

  16. Turyshev, S.G., Shao, M., Alkalai, L., Aurora, N., Garber, D., Helvajian, H., Heinsheimer, T., Janson, S., Males, J.R., Mawet, D., Nakagawa, R., Redfield, S., Shen, J., Strange, N., Swain, M.R., Toth, V.T., Willems, P.A., West, J.L., Weinstein-Weiss, S., Zhou, H.: Direct Multipixel Imaging and Spectroscopy of an Exoplanet with a Solar Gravity Lens Mission. NIAC Final Report on Phase I Award, 2018 (2018). arXiv:1802.08421 [astro-ph.IM]

  17. S.G. Turyshev, M. Shao, V.T. Toth, L.D. Friedman, L. Alkalai, D. Mawet, J. Shen, M.R. Swain, H. Zhou, H. Helvajian, T. Heinsheimer, S. Janson, Z. Leszczynski, J. McVey, D. Garber, A. Davoyan, S. Redfield, J.R. Males. Direct multipixel imaging and spectroscopy of an exoplanet with a solar gravity lens mission, NIAC Final Report on Phase II Award (2020). arXiv:2002.11871 [astro-ph.IM]

  18. Helvajian, H., Rosenthal, A., Poklemba, J., Battista, T.A., DiPrinzio, M.D., Neff, J.M., McVey, J.P., Toth, V.T., Turyshev, S.G.: J. Spacecraft & Rockets 60(3), 829 (2023)

    Article  ADS  Google Scholar 

  19. Turyshev, S.G., Shao, M., Mawet, D., Swain, M.R., Helvajian, H., Heinsheimer, T., McVey, J., Garber, D., Davoyan, A., Redfield, S., Johnson, L.: Direct multipixel imaging and spectroscopy of an exoplanet with a solar gravity lens mission, NIAC Phase III Award, 2020 (2020). https://www.nasa.gov/directorates/spacetech/niac/2020_Phase_I_Phase_II/Direct_Multipixel_Imaging_and_Spectroscopy_of_an_Exoplanet/

  20. Toth, V.T., Turyshev, S.G.: MNRAS 525(4), 5846 (2023)

    Article  ADS  Google Scholar 

  21. Landis, G.A.: arXiv:1604.06351 [astro-ph.EP]

  22. Willems, P.A.: Acta Astronautica 152, 408 (2018)

    Article  ADS  Google Scholar 

  23. Madurowicz, A., Macintosh, B.: ApJ 930, 19 (2022)

    Article  ADS  Google Scholar 

  24. Toth, V.T., Turyshev, S.G.: Phys. Rev. D 103, 124038 (2021)

    Article  ADS  CAS  Google Scholar 

  25. Turyshev, S.G., Toth, V.T.: Phys. Rev. D 101, 044048 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  26. Turyshev, S.G., Toth, V.T.: Phys. Rev. D 99, 024044 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  27. Turyshev, S.G., Garber, D., Friedman, L.D., Hein, A.M., Barnes, N., Batygin, K., Brown, M.E., Cronin, L., Davoyan, A.R., Dubill, A., Eubanks, T.M., Gibson, S., Hassler, D.M., Izenberg, N.R., Kervella, P., Mauskopf, P.D., Murphy, N., Nutter, A., Porco, C., Riccobono, D., Schalkwyk, J., Stevenson, K.B., Sykes, M.V., Sultana, M., Toth, V.T., Velli, M., Worden, S.P.: PSS 235, 105744 (2023)

    Google Scholar 

  28. Friedman, L.D., Garber, D.: Science and technology steps into the interstellar medium” (2014). https://kiss.caltech.edu/workshops/ism/presentations/IAC-2014-Manuscript.pdf. IAC-14,D4.4,3,x22407

  29. Ercol, C.J., Holtzman, G.A.: Early Mission Thermal Performance of Parker Solar Probe through Orbit Four (2020). Int. Conf. Environmental Systems, ICES-2020-117, https://ttu-ir.tdl.org/bitstream/handle/2346/86387/ICES-2020-117.pdf?sequence=1 &isAllowed=y

  30. Youngquist, R.C., Nurge, M.A.: Final Report on a Phase I NASA Innovative Advanced Concepts Study (2018). https://ntrs.nasa.gov/api/citations/20180006588/downloads/20180006588.pdf

  31. Vulpetti, G., Johnson, L., Matloff, G.L.: Solar Sails. A Novel Approach to Interplanetary Travel (Springer-Verlag, New York (2015)

    Book  Google Scholar 

  32. Henninger, J.H.: Solar absorptance and thermal emittance of some common spacecraft thermal control coatings (1984). https://ntrs.nasa.gov/citations/19840015630. NASA Reference Publication 1121

  33. Garber, D., Friedman, L.D., Davoyan, A., Turyshev, S.G., Melamed, N., McVey, J., Sheerin, T.F.: Experiment. Astron. 53(3), 945 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work described here, in part, was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Additional funding has been provided by the Aerospace Corporation. The NIAC Phase III study from which this work was derived also included Breakthrough Initiatives, Xplore Inc., and Cornell Tech (a campus of Cornell University). We thank the NASA Innovative Advanced Concepts (NIAC) program for their support. Pre-decisional information – for planning and discussion purposes only.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slava G. Turyshev.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedman, L.D., Garber, D., Turyshev, S.G. et al. A mission to nature’s telescope for high-resolution imaging of an exoplanet. Exp Astron 57, 1 (2024). https://doi.org/10.1007/s10686-024-09919-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10686-024-09919-x

Keywords

Navigation