Skip to main content
Log in

CAGIRE: a wide-field NIR imager for the COLIBRI 1.3 meter robotic telescope

  • Research
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The use of high energy transients such as Gamma Ray Bursts (GRBs) as probes of the distant universe relies on the close collaboration between space and ground facilities. In this context, the Sino-French mission SVOM has been designed to combine a space and a ground segment and to make the most of their synergy. On the ground, the 1.3 meter robotic telescope COLIBRI, jointly developed by France and Mexico, will quickly point the sources detected by the space hard X-ray imager ECLAIRs, in order to detect and localise their visible/NIR counterpart and alert large telescopes in minutes. COLIBRI is equipped with two visible cameras, called DDRAGO-blue and DDRAGO-red, and an infrared camera, called CAGIRE, designed for the study of high redshift GRBs candidates. Being a low-noise NIR camera mounted at the focus of an alt-azimutal robotic telescope imposes specific requirements on CAGIRE. We describe here the main characteristics of the camera: its optical, mechanical and electronics architecture, the ALFA detector, and the operation of the camera on the telescope. The instrument description is completed by three sections presenting the calibration strategy, an image simulator incorporating known detector effects, and the automatic reduction software for the ramps acquired by the detector. This paper aims at providing an overview of the instrument before its installation on the telescope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. The differential ramp is the ramp made by the succession of the differences between two consecutive frames.

  2. We call ramp non-linearity, the deviation of counts in a ramp from a straight line. This deviation is mostly due to the increase of pixel capacitance with the growing number of charges accumulated in a pixel. We call flux non-linearity, the fact that the linear extrapolation of a ramp is not exactly proportional to the flux received by the pixel.

  3. the Reionization And Transients InfraRed camera.

  4. The view expressed herein can in no way be taken to reflect the official opinion of the European Space Agency.

References

  1. Wei, J., Cordier, B., Antier, S., Antilogus, P., Atteia, J. L., Bajat, A., Basa, S., Beckmann, V., Bernardini, M.G., Boissier, S., Bouchet, L., Burwitz, V., Claret, A., Dai, Z.G., Daigne, F., Deng, J., Dornic, D., Feng, H., Foglizzo, T., Gao, H., Gehrels, N., Godet, O., Goldwurm, A., Gonzalez, F., Gosset, L., Götz, D., Gouiffes, C., Grise, F., Gros, A., Guilet, J., Han, X., Huang, M., Huang, Y.F., Jouret, M., Klotz, A., La Marle, O., Lachaud, C., Le Floch, E., Lee, W., Leroy, N., Li, L.X., Li, S.C., Li, Z., Liang, E.W., Lyu, H., Mercier, K., Migliori, G., Mochkovitch, R., O’Brien, P., Osborne, J., Paul, J., Perinati, E., Petitjean, P., Piron, F., Qiu, Y., Rau, A., Rodriguez, J., Schanne, S., Tanvir, N., Vangioni, E., Vergani, S., Wang, F.Y., Wang, J., Wang, X.G., Wang, X.Y., Watson, A., Webb, N., Wei, J.J., Willingale, R., Wu, C., Wu, X.F., Xin, L.P., Xu, D., Yu, S., Yu, W.F., Yu, Y.W., Zhang, B., Zhang, S.N., Zhang, Y., Zhou, X.L.: The Deep and Transient Universe in the SVOM Era: New Challenges and Opportunities - Scientific prospects of the SVOM mission. arXiv e-prints, art. arXiv:1610.06892 (2016)

  2. Atteia, J.L., Cordier, B., Wei, J.: The SVOM mission. Int. J. Mod. Phys. D. 31(05), 2230008 (2022). https://doi.org/10.1142/S0218271822300087

    Article  ADS  Google Scholar 

  3. Basa, S., Lee, W.H., Dolon, F., Watson, A.M., Floriot, J., Atteia, J.L., Butler, N.R., Dornic, D., Lombardo, S., Ronayette, S., Ageron, M., Agneray, F., Ángeles, F., Bautista, L., Benamar-Aissa, H., Blanpain, C., Boulade, O., Boy, J., Buat, V., Cadena, E., Cuevas, S., Farah, A., Figueroa, L., Fuentes, J., Gaïti, C., Gallais, P., Kajfasz, E., Langarica, R., Langlois, A., Larrieu, M., Le Van Suu, A., Lecubin, J., López Ángeles, E., Lugo, E., Malgoyre, A., Mathon, R., Moreau, C., Nouvel De La Flèche, A., Ochoa, J.L., Pedrayes-López, M., Ramon, P., Ruíz-Díaz-Soto, J., Tinoco, S., Valentin, H.: COLIBRI, a wide-field 1.3 m robotic telescope dedicated to the transient sky. In: Marshall, H.K., Spyromilio, J., Usuda, T., (eds) Ground-based and Airborne Telescopes IX, vol. 12182, pp. 121821S. International Society for Optics and Photonics, SPIE (2022). https://doi.org/10.1117/12.2627139

  4. Wu, C., Qiu, Y.L., Cai, H.B.: SVOM Visible Telescope: Performance and Data Process Scheme. In: Roming, P., Kawai, N., Pian, E. (eds) Death of Massive Stars: Supernovae and Gamma-Ray Bursts, vol. 279, pp. 421-422 (2012). https://doi.org/10.1017/S1743921312013646

  5. Fan, X., Zou, G., Qiu, Y., Pang, Z., Zhao, H., Chen, Q., Pan, Y., Yuan, H.: Optical design of the visible telescope for the SVOM mission. ao, 59(10), 3049 (2020). https://doi.org/10.1364/AO.386177

    Article  Google Scholar 

  6. Daigne, F., Rossi, E.M., Mochkovitch, R.: The redshift distribution of Swift gamma-ray bursts: evidence for evolution. mnras, 372(3), 1034–1042 (2006). https://doi.org/10.1111/j.1365-2966.2006.10837.x

    Article  ADS  Google Scholar 

  7. Kistler, M.D., Yüksel, H., Beacom, J.F., Hopkins, A.M., Wyithe, J.S.B.: The star formation rate in the reionization Era as indicated by gamma-ray bursts. apjl, 705(2), L104–L108 (2009). https://doi.org/10.1088/0004-637X/705/2/L104

    Article  ADS  Google Scholar 

  8. Basa, S., Cuby, J.G., Savaglio, S., Boissier, S., Clément, B., Flores, H., Le Borgne, D., Mazure, A.: Constraining the nature of the most distant gammaray burst host galaxies. A &A 542, A103 (2012). https://doi.org/10.1051/0004-6361/201218882

  9. McGuire, J.T.W., Tanvir, N.R., Levan, A.J., Trenti, M., Stanway, E.R., Shull, J.M., Wiersema, K., Perley, D.A., Starling, R.L.C., Bremer, M., Stocke, J.T., Hjorth, J., Rhoads, J.E., Curtis-Lake, E., Schulze, S., Levesque, E.M., Robertson, B., Fynbo, J.P.U., Ellis, R.S., Fruchter, A.S.: Detection of Three Gamma-ray Burst Host Galaxies at z \(\sim \) 6. ApJ, 825(2), 135 (2016). https://doi.org/10.3847/0004-637X/825/2/135

    Article  ADS  Google Scholar 

  10. Bromm, V., Loeb, A.: High-Redshift Gamma-Ray Bursts from Population III Progenitors. apj, 642(1), 382–388 (2006). https://doi.org/10.1086/500799

    Article  ADS  Google Scholar 

  11. Toma, K., Sakamoto, T., Mészáros, P.: Population III Gammaray Burst Afterglows: Constraints on Stellar Masses and External Medium Densities. apj, 731(2), 127 (2011). https://doi.org/10.1088/0004-637X/731/2/127

    Article  ADS  Google Scholar 

  12. Han, X., Xiao, Y., Zhang, P., Turpin, D., Xin, L., Wu, C., Cai, H., Dong, W., Huang, L., Kang, Z., Leroy, N., Li, H., Li, Z., Lu, X., Qiu, Y., Stahl, B.E., Wang, J., Wang, X., Xu, Y., Yang, Y., Zhao, Y., Zhang, R., Zheng, W., Zheng, Y., Wei, J.: The automatic observation management system of the gwac network. i. system architecture and workflow. Publ. Astron. Soc. Pac. 133(1024), 065001 (2021). https://doi.org/10.1088/1538-3873/abfb4e

    Article  ADS  Google Scholar 

  13. de la Flèche, A.N., Atteia, J.L., Valentin, H., Larrieu, M., Boy, J., Gravrand, O., Boulade, O., Clemens, J.C., Secroun, A., Kajfasz, E., Llido, O., Basa, S., Dolon, F., Floriot, J., Lombardo, S., Lamoure, A., Rubaldo, L., Fieque, B., Roumegoux, J., Geoffray, H., Watson, A.M., Lee, W.H., Butler, N.: Flux reconstruction for the NIR camera CAGIRE at the focus of the Colibrí Telescope. In: Holland, A.D., Beletic, J. (eds) X-Ray, Optical, and Infrared Detectors for Astronomy X, vol. 12191, pp. 121910Q. International Society for Optics and Photonics, SPIE, (2022). https://doi.org/10.1117/12.2627826

  14. Watson, A., Corre, D.: Colibri expected performance. COLIBRI Internal Report (2018)

  15. Stegmeier, J.: Eso new general detector controller (ngc) - base software and infrared detector control software. (2013) https://www.eso.org/sci/facilities/develop/detectors/controllers/ngc/general/16072008-jstegmei.pdf

  16. Baade, D., Balestra, A., Cumani, C., Eschbaumer, S., Finger, G., Geimer, C., Mehrgan, L., Meyer, M., Stegmeier, J., Reyes, J., Todorovic, M.: NGC - ESO’s New General Detector Controller. The Messenger. 136, 20–24 (2009)

    ADS  Google Scholar 

  17. Fuentes-Fernández, J., Watson, A.M., Cuevas, S., Basa, S., Floriot, J., Dolon, F., Valentin, H., Challita, Z., Vola, P.: Optical Design of COLIBRÍ: A Fast Follow-up Telescope for Transient Events. J. Astron. Instrum. 9(1), 2050001–280 (2020). https://doi.org/10.1142/S2251171720500014

    Article  Google Scholar 

  18. Farah, A., Heron-Romero, A., Fuentes-Fernandez, J., Tinoco, S., Langarica, R., Langlois, A., Floriot, J., Dolon, F., Ruiz-Diaz-Soto, J., Watson, A.M., Basa, S., Boy, J., Cuevas, S., Lee, W.H.: Structural design techniques applied in ddrago/cagire instruments for the colibrí telescope. In: Evans, C.J., Bryant, J.J., Motohara, K. (eds.) Ground-based and Airborne Instrumentation for Astronomy IX, vol. 12184, pp. 1218488. International Society for Optics and Photonics, SPIE, (2022). https://doi.org/10.1117/12.2630437

  19. Langarica, R., Watson, A.M., Angeles, F., Atteia, J., Basa, S., Cuevas, S., Dolon, F., Farah, A., Floriot, J., Fuentes-Fernández, J., Lee, W., Ruíz-Díaz-Soto, J., Tinoco, S., Valentin, H.: Design of the DDRAGO wide-field imager for the COLIBRÍ Telescope. In: Evans, C.J., Bryant, J.J., Motohara, K. (eds) Ground-based and Airborne Instrumentation for Astronomy IX, vol. 12184, pp. 121847W. International Society for Optics and Photonics, SPIE (2022). https://doi.org/10.1117/12.2629456

  20. Weber, H., Nelms, N., Minoglou, K., Ciapponi, A., Wittig, S., Leone, B.: Detector development activities supported by the European Space Agency. In: International Conference on Space Optics - ICSO 2018, 111803R, vol. 11180. SPIE, (2019). https://doi.org/10.1117/12.2536054

  21. Gravrand, O., Lobre, C., Santailler, J., Le Goff, T., Baier, N., Badano, G., Boulade, O., Pichon, T., Nouvel-Delaflèche, A., Sam Giao, D., Maltere, A., Aufranc, S., Salvetti, F., Roumegoux, J., Brosse, B., Lamoure, A.: Fabrication and characterization of a high performance NIR 2kx2k MCT array at CEA and Lynred for astronomy applications. In: Andresen, B.F., Fulop, G.F., Zheng, L. (eds) Infrared Technology and Applications XLVIII, vol. 12107, pp. 1210706. International Society for Optics and Photonics, SPIE, (2022). https://doi.org/10.1117/12.2618857

  22. Fièque, B., Lamoure, A., Salvetti, F., Aufranc, S., Gravrand, O., Badano, G., Boulade, O., Mouzali, S., Basa, S.: Development of astronomy large focal plane array ”ALFA” at Sofradir and CEA. In: Holland, A.D., Beletic, J. (eds) High Energy, Optical, and Infrared Detectors for Astronomy VIII, volume 10709, pages 33 - 51. International Society for Optics and Photonics, SPIE, (2018). https://doi.org/10.1117/12.2311713

  23. Pichon, T., Bounab, A., Cervera, C., Delisle, C., Derelle, S., Dubreuil, D., Horeau, B., Huard, E., Ketchazo, C., Moreau, V., Mulet, P., Lortholary, M., Orduna, T., Provost, L., Ronayette, S., Tellier, O., Boulade, O.: Quantix and Intrapix: Test Benches Dedicated to Quantum Efficiency Measurement and Intra-Pixel Response of Detectors from VIS to LWIR. In: Holland, A.D., Beletic, J. (eds) X-Ray, Optical, and Infrared Detectors for Astronomy X, vol. 12191, pp. 121912I. International Society for Optics and Photonics, SPIE, (2022a). https://doi.org/10.1117/12.2630232. https://doi.org/10.1117/12.2630232

  24. Kubik, B., Barbier, R., Castera, A., Chabanat, E., Ferriol, S., Smadja, G.: Impact of Common Modes Correlations and Time Sampling on the Total Noise of a H2RG Near-IR Detector. In: Holland, A.D., Beletic, J. (eds) High Energy, Optical, and Infrared Detectors for Astronomy VI, volume 9154 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp. 91541B, (2014). https://doi.org/10.1117/12.2055071

  25. Pichon, T., Badano, G., Bounab, A., Delisle, C., Fieque, B., Gravrand, O., Horeau, B., Lamoure, A., Lobre, C., Lortholary, M., Moreau, V., Mulet, P., Orduna, T., Provost, L., Sam-Giao, D., Tellier, O., Boulade, O.: Asteroid and ALFA programs: to equip Europe with high performance IR detectors for space applications. In: Holland, A.D., Beletic, J. (eds) XRay, Optical, and Infrared Detectors for Astronomy X, vol. 12191, pp. 121911N. International Society for Optics and Photonics, SPIE, (2022b). https://doi.org/10.1117/12.2630213

  26. Le Goff, T., Baier, N., Gravrand, O., Boulade, O., Pichon, T.: Persistence and Dark Current Characterization on HgCdTe Short Wave Infrared Imagers for Astronomy at CEA and Lynred. In: Holland, A.D., Beletic, J. (eds) X-Ray, Optical, and Infrared Detectors for Astronomy IX, volume 11454, page 114541K. International Society for Optics and Photonics, SPIE, (2020). https://doi.org/10.1117/12.2560338

  27. Corre, D., Basa, S., Klotz, A., Watson, A.M., Ageron, M., Ambert, P., Ángeles, F., Atteia, J.L., Blanc, P.E., Boulade, O., Boy, J., Cadena, E., Cordier, B., Cuevas Cardona, S., Dolon, F., Dornic, D., Dubreuil, D., Farah, A.S., Figueroa, L., Floriot, J., Fuentes-Fernández, J., Gallais, P., Jiménez-Bailón, E., Langarica Lebre, R., Le Borgne, J.F., Lee, W.H., Le Van Suu, A., Marcos, M., Mathon, R., Meessen, C., Ochoa, J.L., Pallier, E., Platzer, J., Quirós, F., Ronayette, S., Turpin, D., Valentin, H., Vergani, S.D.: End-to-End Simulations for COLIBRI, Ground Follow-up Telescope for the SVOM Mission. In: Angeli, G.Z., Dierickx, P. (eds) Modeling, Systems Engineering, and Project Management for Astronomy VIII, vol. 10705, pp. 107051R. International Society for Optics and Photonics, SPIE, (2018). https://doi.org/10.1117/12.2313127

  28. Cutri, R.M., Skrutskie, M.F., van Dyk, S., Beichman, C.A., Carpenter, J.M., Chester, T., Cambresy, L., Evans, T., Fowler, J., Gizis, J., Howard, E., Huchra, J., Jarrett, T., Kopan, E.L., Kirkpatrick, J.D., Light, R.M., Marsh, K.A., McCallon, H., Schneider, S., Stiening, R., Sykes, M., Weinberg, M., Wheaton, W.A., Wheelock, S., Zacarias, N.: VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003). VizieR Online Data Catalog, art. II/246, (2003)

  29. Butler, N., Klein, C., Fox, O., Lotkin, G., Bloom, J., Xavier Prochaska, J., Ramirez-Ruiz, E., de Diego, J.A., Georgiev, L., González, J., Lee, W.H., Richer, M.G., Román, C., Watson, A.M., Gehrels, N., Kutyrev, A., Bernstein, R., Carlos Alvarez, L., Ceseña, U., Clark, D., Colorado, E., Córdova, A., Farah, A., García, B., Guisa, G., Herrera, J., Lazo, F., López, E., Luna, E., Martínez, B., Murillo, F., Manuel Murillo, J., Manuel Núñez, J., Herlinda Pedrayes, M., Quirós, F., Luis Ochoa, J., Sierra, G., Moseley, H., Rapchun, D., Robinson, F.D., Samuel, M.V., Sparr, L.M.: First light with RATIR: an automated 6 - band optical / NIR imaging camera. In: McLean, I.S., Ramsay, S.K., Takami, H. (eds) Groundbased and Airborne Instrumentation for Astronomy IV, vol. 8446, pp. 336 - 342. International Society for Optics and Photonics, SPIE, (2012). https://doi.org/10.1117/12.926471

  30. Bertin, E., Arnouts, S.: SExtractor: Software for source extraction. Astron. Astrophys. Suppl. 117, 393–404 (1996). https://doi.org/10.1051/aas:1996164

    Article  ADS  Google Scholar 

  31. Hunter, J.D.: Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  32. Harris, C.R., Jarrod Millman, K., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2

    Article  ADS  Google Scholar 

Download references

Acknowledgements

CAGIRE is partly funded by the French Centre National d’Etudes Spatiales (CNES). The PhD contract of A. Nouvel de la Flèche is financed by CNES and LYNRED. The development of the ALFA detector has been funded by ESA contract 22949/09/NL/CP. We are grateful to ESA for the loan of an ALFA detector to the CAGIRE project (the view expressed herein can in no way be taken to reflect the official opinion of the European Space Agency). This work has been partially supported by the LabEx FOCUS ANR-11-LABX-0013. The calibration data used in the ALFA detector section of this paper were acquired at CEA. We acknowledge the Observatorio Astronómico Nacional and the Instituto de Astronomía of the Universidad Nacional Autónoma de México for providing data acquired with the RATIR instrument for the validation of the Preproc. We particularly thank Alan Watson for the data acquisition and Nathaniel Butler for useful advice on the preprocessing. We would like to thank two IRAP engineers who had a significant contribution to CAGIRE before their retirement: Francis Beigbeder and Patrick Couderc. Softare: Matplotlib [31], numpy [32].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alix Nouvel de la Flèche.

Ethics declarations

Financial statement

The PhD contract of A. Nouvel de la Flèche is financed by CNES and LYNRED. The development of the ALFA detector has been funded by ESA contract 22949/09/NL/CP. This work has been partially supported by the LabEx FOCUS ANR-11-LABX-0013.

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix A

Appendix A

Fig. 24
figure 24

Diagram of the overall electronics architecture

1.1 A.1 Diagram of the overall electronics architecture

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouvel de la Flèche, A., Atteia, JL., Boy, J. et al. CAGIRE: a wide-field NIR imager for the COLIBRI 1.3 meter robotic telescope. Exp Astron 56, 645–685 (2023). https://doi.org/10.1007/s10686-023-09903-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-023-09903-x

Keywords

Navigation