Ruaud, M., Loison, J.C., Hickson, K.M., Gratier, P., Hersant, F., Wakelam, V.: Modeling complex organic molecules in dense regions: Eley-Rideal and complex induced reaction. Mon. Not. R. Astron. Soc. 447, 4004–4017 (2015). https://doi.org/10.1093/mnras/stu2709. (arXiv:1412.6256)
ADS
Article
Google Scholar
Brasseur, G., Solomon, S.: Aeronomy of the Middle Atmosphere, 2nd edn. D. Reidel Publishing Company, Dordrecht, Holland (1986)
Google Scholar
Brasseur, G.P., Solomon, S.: Aeronomy of the middle atmosphere: chemistry and physics of the stratosphere and mesosphere. Springer, Netherlands (2005).. (ISBN 978-1-4020-3824-2)
Book
Google Scholar
Verronen, P.T., Andersson, M.E., Marsh, D.R., Kovács, T., Plane, J.M.C.: WACCM-D: whole atmosphere community climate model with D-region ion chemistry. J. Adv. Modeling Earth Sys. 8, 954–975 (2016). https://doi.org/10.1002/2015MS000592
ADS
Article
Google Scholar
Bardeen, C.G., Toon, O.B., Jensen, E.J., et al.: Numerical simulations of the three-dimensional distribution of polar mesospheric clouds and comparisons with Cloud Imaging and Particle size (CIPS) experiment and the Solar Occultation For Ice Experiment (SOFIE) observations. J. Geophys. Res. 115, D10204 (2010). https://doi.org/10.1029/2009JD012451
ADS
Article
Google Scholar
Gadsden, M., Schröder, W.: Noctilucent clouds. Springer-Verlag, Berlin (1989). (ISBN 978-3-642-48626-5)
Book
Google Scholar
Lundin, R., Zakharov, A., Pellinen, R., et al.: ASPERA/ Phobos measurements of the ion outflow from the Martian ionosphere. Geophys. Res. Lett. 17, 873 (1990). https://doi.org/10.1029/GL017i006p00873
ADS
Article
Google Scholar
Lundin, R., Barabash, S., Holmström, M., et al.: Atmospheric origin of cold ion escape from Mars. Geophys. Res. Lett. 36, L17202 (2009). https://doi.org/10.1029/2009GL039341
ADS
Article
Google Scholar
Yamauchi, M., Slapak, R.: Energy conversion through mass loading of escaping ionospheric ions for different Kp values. Ann. Geophys. 36, 1–12 (2018). https://doi.org/10.5194/angeo-36-1-2018
ADS
Article
Google Scholar
Yamauchi, M.: Terrestrial ion escape and relevant circulation in space. Ann. Geophys. 37, 1197–1222 (2019). https://doi.org/10.5194/angeo-37-1197-2019,2019
ADS
Article
Google Scholar
Fok, M.C., Kozyra, J.U., Nagy, A.F., Cravens, T.E.: Lifetime of ring current particles due to coulomb collisions in the plasmasphere. J. Geophys. Res. 96, 7861–7867 (1991). https://doi.org/10.1029/90JA02620
ADS
Article
Google Scholar
Mazelle, C.X., Meziane, K., Mitchell, D.L., et al.: Evidence for neutrals-foreshock electrons impact at Mars. Geophys. Res. Lett. 45, 3768–3774 (2018). https://doi.org/10.1002/2018GL077298
ADS
Article
Google Scholar
Ivlev, A.V., Padovani, M., Galli, D., Caselli, P.: Interstellar dust charging in dense molecular clouds: cosmic ray effects. Astrophys. J. 812, 135 (2015). https://doi.org/10.1088/0004-637X/812/2/135
ADS
Article
Google Scholar
Millar, T.J.: Astrochemistry. Plasma Sources Sci. Technol. 24, 043001 (2015). https://doi.org/10.1088/0963-0252/24/4/043001
ADS
Article
Google Scholar
Christon, S.P., Hamilton, D.C., DiFabio, R.D., et al.: Saturn suprathermal O2+ and mass-28+ molecular ions: Long-term seasonal and solar variation. J. Geophys. Res. Space Physics 118, 3446–3462 (2013). https://doi.org/10.1002/jgra.50383
ADS
Article
Google Scholar
Schunk, R.W., Nagy, A.F.: Ionospheres: physics, plasma physics, and chemistry. Cambridge University Press, Cambridge (2009). (ISBN-13 978-0-511-63489-5)
Book
Google Scholar
Bougher, S.W., Blelly, P.L., Combi, M., et al.: Neutral upper atmosphere and ionosphere modeling. Space Sci. Rev. 139, 107 (2008). https://doi.org/10.1007/s11214-008-9401-9
ADS
Article
Google Scholar
Meier, R.R., Picone, J.M., Drob, D., et al.: Remote sensing of Earth’s limb by TIMED/GUVI: Retrieval of thermospheric compositionand temperature. Earth Space Sci. 2, 1–37 (2015). https://doi.org/10.1002/2014EA000035
ADS
Article
Google Scholar
Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C.: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 107, 1468 (2002). https://doi.org/10.1029/2002JA009430
Article
Google Scholar
Zoennchen, J.H., Nass, U., Fahr, H.J.: Terrestrial exospheric hydrogen density distributions under solar minimum and solar maximum conditions observed by the TWINS stereo mission. Ann. Geophys. 33, 413–426 (2015). https://doi.org/10.5194/angeo-33-413-2015
ADS
Article
Google Scholar
Johnson, C.Y.: Ion and neutral composition of the ionosphere. Annals of the IQSY 5, 197–213 (1969)
ADS
Google Scholar
Lühr, H., et al.: Thermospheric up-welling in the cusp region: Evidence from CHAMP observations. Geophys. Res. Lett. 31, L06805 (2004). https://doi.org/10.1029/2003GL019314
ADS
Article
Google Scholar
Shinagawa, H., Oyama, S.: A two-dimensional simulation of thermospheric vertical winds in the vicinity of an auroral arc. Earth Planet Space 58, 1173–1181 (2006). https://doi.org/10.1186/BF03352007
ADS
Article
Google Scholar
Hubert, B., Gerard, J.-C., Killeen, T.L., et al.: Observation of anomalous temperatures in the daytime O(1 D) 6300 Å thermospheric emission: A possible signature of nonthermal atoms. J. Geophys. Res. 106, 12753–12764 (2001). https://doi.org/10.1029/2000JA900122
ADS
Article
Google Scholar
Lakhina, G.S., Tsurutani, B.T.: Satellite drag effects due to uplifted oxygen neutrals during super magnetic storms. Nonlin. Processes Geophys. 24, 745–750 (2017). https://doi.org/10.5194/npg-24-745-2017
ADS
Article
Google Scholar
Shematovich, V., Gerard, J.-C., Bisikalo, D.V., Hubert, B.: Thermalization of O(1 D) atoms in the thermosphere. J. Geophys. Res. 104, 4287–4295 (1999). https://doi.org/10.1029/1998JA900154
ADS
Article
Google Scholar
Gordiets, B.F., Kulikov, Y.N., Markov, M.N., Marov, M.Y.: Numerical modeling of the thermospheric heat budget. J. Geophys. Res. 87, 4504–4514 (1982). https://doi.org/10.1029/JA087iA06p04504
ADS
Article
Google Scholar
Tian, F., Kasting, J.F., Liu, H.-L., Roble, R.G.: Hydrodynamic planetary thermosphere model: 1. Response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J. Geophys. Res. 113, E05008 (2008). https://doi.org/10.1029/2007JE002946
ADS
Article
Google Scholar
Krauss, S., Pfleger, M., Lammer, H.: Satellite-based analysis of thermosphere response to extreme solar flares. Ann. Geophys. 32, 1305–1309 (2014). https://doi.org/10.5194/angeo-32-1305-2014
ADS
Article
Google Scholar
Zoennchen, J.H., Nass, U., Fahr, H.J., Goldstein, J.: The response of the H geocorona between 3 and 8 Re to geomagnetic disturbances studied using TWINS stereo Lyman-alpha data. Ann. Geophys. 35, 171–179 (2017). https://doi.org/10.5194/angeo-35-171-2017
ADS
Article
Google Scholar
Sutton, E.K., Forbes, J.M., Nerem, R.S.: Global thermospheric neutral density and wind response to the severe2003 geomagnetic storms from CHAMP accelerometer data. J. Geophys. Res. 110, A09S40 (2005). https://doi.org/10.1029/2004JA010985
ADS
Article
Google Scholar
Latteck, R., Strelnikova, I.: Extended observations of polar mesosphere winter echoes over Andøya (69°N) using MAARSY. J. Geophys. Res. 120, 8216–8226 (2015). https://doi.org/10.1002/2015JD023291
Article
Google Scholar
Sarris, T.E., Talaat, E.R., Palmroth, M., Dandouras, I., et al.: (2020), Daedalus: a low-flying spacecraft for in situ exploration of the lower thermosphere-ionosphere. Geosci. Instrum. Methods Data Syst. 9, 153–191 (2020). https://doi.org/10.5194/gi-9-153-2020
ADS
Article
Google Scholar
Schubert, G., Whitehead, J.A.: Moving flame experiment with liquid mercury: possible implications for the venus atmosphere. Science 163, 71–72 (1969). https://doi.org/10.1126/science.163.3862.71
ADS
Article
Google Scholar
Bird, M.K., Allison, M., Asmar, S.W., et al.: The vertical profile of winds on Titan. Nature 438, 800–802 (2005). https://doi.org/10.1038/nature04060
ADS
Article
Google Scholar
Lundin, R., Barabash, S., Futaana, Y., Holmström, M., Perez-de-Tejada, H., Sauvaud, J.-A.: A large-scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation. Geophys. Res. Lett. 40, 1273–1278 (2013). https://doi.org/10.1002/grl.50309
ADS
Article
Google Scholar
Lundin, R., Barabash, S., Futaana, Y., et al.: Solar wind-driven thermospheric winds over the Venus north polar region. Geophys. Res. Lett. 41, 4413–4419 (2014). https://doi.org/10.1002/2014GL060605
ADS
Article
Google Scholar
Miller, K.L., Whitten, R.C.: Ion dynamics in the Venus ionosphere. Space. Sci. Rev. 55, 165–199 (1991). https://doi.org/10.1007/BF00177137
ADS
Article
Google Scholar
Horinouchi, T., Hayashi, Y., Watanabe, S., Yamada, M., et al.: How waves and turbulence maintain the super-rotation of Venus’ atmosphere. Science 368(6489), 405–409 (2020). https://doi.org/10.1126/science.aaz4439
ADS
MathSciNet
Article
Google Scholar
Edberg, N.J.T., Ågren, K., Wahlund, J.-E., et al.: Structured ionospheric outflow during the Cassini T55–T59 Titan flybys. Plan. Space Sci. 59, 788–797 (2011). https://doi.org/10.1016/j.pss.2011.03.007
ADS
Article
Google Scholar
Wahlund, J.-E., Boström, R., Gustafsson, G., et al.: Cassini measurements of cold plasma in the ionosphere of Titan. Science 308, 986–989 (2005). https://doi.org/10.1126/science.1109807
ADS
Article
Google Scholar
Vinatier, S., Bézard, B., Fouchet, T., Teanby, N.A., de Kok, R., Irwin, P.G.J., Conrath, B.J., Nixon, C.A., Romani, P.N., Flasar, F.M., Coustenis, A.: Vertical abundance profiles of hydrocarbons in Titan’s atmosphere at 15◦ S and 80◦ N retrieved from Cassini/CIRS spectra. Icarus 188, 120–138 (2007)
ADS
Article
Google Scholar
Denton, M.H., Kivi, R., Ulich, T., Rodger, C.J., Clilverd, M.A., Horne, R.B., Kavanagh, A.J.: Solar proton events and stratospheric ozone depletion over northern Finland. J. Atmos. Solar Terr. Phys. 177, 218–227 (2018)
ADS
Article
Google Scholar
Nishiyama, T., Sato, K., Nakamura, T., Tsutsumi, M., Sato, T., Tanaka, Y., Nishimura, K., Tomikawa, Y., Kohma, M.: Simultaneous observations of polar mesosphere winter echoes and cosmic noise absorptions in a common volume by the PANSY radar (69.0°S, 39.6°E). J. Geophys. Res. Space Phys. (2018). https://doi.org/10.1029/2017JA024717
Article
Google Scholar
Keller, C.N., Cravens, T.E., Gan, L.: A model of the ionosphere of Titan. J. Geophys. Res. 97, 12117–12135 (1992). https://doi.org/10.1029/92JA00231
ADS
Article
Google Scholar
Vuitton, V., Yelle, R.V., McEwan, M.J.: Ion chemistry and N-containing molecules in Titan’s upper atmosphere. Icarus 191, 722–742 (2007). https://doi.org/10.1016/j.icarus.2007.06.023
ADS
Article
Google Scholar
Pfaff, R.F., Jr.: The near-Earth plasma environment. Space Sci. Rev. 168, 23–112 (2012). https://doi.org/10.1007/s11214-012-9872-6
ADS
Article
Google Scholar
Hörst, S.M., Yelle, R.V., Buch, A., et al.: Formation of amino acids and nucleotide bases in a Titan atmosphere simulation experiment. Astrobio. 12, 809–817 (2012). https://doi.org/10.1089/ast.2011.0623
ADS
Article
Google Scholar
Geiss, J.: Composition measurements and the history of cometary matter. Astron. Astrophys. 187, 859–866 (1987). https://doi.org/10.1007/978-3-642-82971-0_146
ADS
Article
Google Scholar
Altwegg, K., Balsiger, H., Bar-Nun, A., et al.: Prebiotic chemicals - amino acid and phosphorus - in the coma of comet 67P/Churyumov-Gerasimenko. Sci. Adv. 2(5), e1600285 (2016). https://doi.org/10.1126/sciadv.1600285
ADS
Article
Google Scholar
Johnson, R.E., Quickenden, T.I.: Photolysis and radiolysis of water ice on outer solar system bodies. J. Geophys. Res. 10, 10985–10996 (1997). https://doi.org/10.1029/97JE00068
ADS
Article
Google Scholar
Goetz, C., et al.: Structure and evolution of the diamagnetic cavity at comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 462, S459–S467 (2016). https://doi.org/10.1093/mnras/stw3148
Article
Google Scholar
Henri, P., Vallières, X., Hajra, R., et al.: Diamagnetic region(s): structure of the unmagnetized plasma around Comet 67P/CG. Mon. Not. R. Astron. Soc. 469, S372–S379 (2017). https://doi.org/10.1093/mnras/stx1540
Article
Google Scholar
Silber, E.A., Boslough, M., Hocking, W.K., Gritsevich, M., Whitaker, R.W.: Physics of meteor generated shock waves in the Earth’s atmosphere – A review. Adv. Space Res. 62, 489–532 (2018). https://doi.org/10.1016/j.asr.2018.05.010
ADS
Article
Google Scholar
Perevalova, N.P., Shestakov, N.V., Voeykov, S.V., Takahashi, H., Guojie, M.: Ionospheric disturbances in the vicinity of the Chelyabinsk meteoroid explosive disruption as inferred from dense GPS observations. Geophys. Res. Lett. 42, 6535–6543 (2015). https://doi.org/10.1002/2015GL064792
ADS
Article
Google Scholar
Airapetian, V.S., Glocer, A., Khazanov, G.V., et al.: How hospitable are space weather affected habitable zones? The role of ion escape. Astrophys. J. Lett. 836, L3–L9 (2017). https://doi.org/10.3847/2041-8213/836/1/L3
ADS
Article
Google Scholar
Barnard, L., Lockwood, M., Hapgood, M.A., et al.: Predicting space climate change. Geophys. Res. Lett. 38, L16103 (2011). https://doi.org/10.1029/2011GL048489
ADS
Article
Google Scholar
Daglis, I.A., Chang, L.C., Dasso, S., Gopalswamy, N., Khabarova, O.V., Kilpua, E., Lopez, R., Marsh, D., Matthes, K., Nandy, D., Seppälä, A., Shiokawa, K., Thiéblemont, R., Zong, Q.: Predictability of variable solar–terrestrial coupling. Ann. Geophys. 39, 1013–1035 (2021). https://doi.org/10.5194/angeo-39-1013-2021
ADS
Article
Google Scholar
Friis-Christensen, E., Lassen, K.: Length of the solar cycle: an indicator of solar activity closely associated with climate. Science 254, 698–700 (1991). https://doi.org/10.1126/science.254.5032.698
ADS
Article
Google Scholar
Stauning, P.: Solar activity–climate relations: A different approach. J. Atmosph. Solar-Terrest. Phys 73, 1999–2012 (2011). https://doi.org/10.1016/j.jastp.2011.06.011
ADS
Article
Google Scholar
Svensmark, H., Bondo, T., Svensmark, J.: Cosmic ray decreases affect atmospheric aerosols and clouds. Geophys. Res. Lett. 36, L15101 (2009). https://doi.org/10.1029/2009GL038429
ADS
Article
Google Scholar
Airapetian, V.S., Barnes, R., Cohen, O., et al.: Impact of space weather on climate and habitability of terrestrial-type exoplanets. Int. J. Astrobiol. 18, 1–59 (2019). https://doi.org/10.1017/S1473550419000132
Article
Google Scholar
Gunell, H., Maggiolo, R., H. Nilsson H., et al.: Why an intrinsic magnetic field does not protect a planet against atmospheric escape. Astron. Astrophys. (2018). https://doi.org/10.1051/0004-6361/201832934
Article
Google Scholar
Nilsson, H.: Heavy ion energization, transport, and loss in the Earth’s magnetosphere. In: Liu, W., Fujimoto, M. (eds.) The dynamic magnetosphere. Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-0501-2_17
Chapter
Google Scholar
Krauss, S., Fichtinger, B., Lammer, H., Hausleitner, W., Kulikov, Yu.N., Ribas, I., Shematovich, V.I., Bisikalo, D., Lichtenegger, H.I.M., Zaqarashvili, T.V., Khodachenko, M.L., Hanslmeier, A.: Solar flares as proxy for the young Sun: satellite observed thermosphere response to an X17.2 flare of Earth’s upper atmosphere. Ann. Geophys. 30, 1129–1141 (2012). https://doi.org/10.5194/angeo-30-1129-2012
ADS
Article
Google Scholar
Lowe, D., MacKenzie, A.R.: Polar stratospheric cloud microphysics and chemistry. J. Atmosph. Solar Terrest. Phy. 70, 13–40 (2008). https://doi.org/10.1016/j.jastp.2007.09.011
ADS
Article
Google Scholar
Torvén, S.: Current limitation and electrical gas clean up in low-pressure mercury. Ark. Fys. 35, 513 (1968)
Google Scholar
Mozer, F.S., Carlson, C.W., Hudson, M.K., Torbert, R.B., Parady, B., Yatteau, J., Kelley, M.C.: Observations of paired electrostatic shocks in the polar magnetosphere. Phys. Rev. Lett. 38, 292 (1977). https://doi.org/10.1103/PhysRevLett.38.292
ADS
Article
Google Scholar
Bishop, J., Mierkiewicz, E.J., Roesler, F.L., Gómez, J.F., Morales, C.: Data-model comparison search analysis of coincident PBO Balmer α, EURD Lyman β geocoronal measurements from March 2000. J. Geophys. Res. 109, A05307 (2004). https://doi.org/10.1029/2003JA010165
ADS
Article
Google Scholar
Asamura, K., Chaston, C.C., Itoh, Y., et al.: Sheared flows and small-scale Alfvén wave generation in the auroral acceleration region. Geophys. Res. Lett. 36, L05105 (2009). https://doi.org/10.1029/2008GL036803
ADS
Article
Google Scholar
Saito, H., Hirahara, M., Mizuno, M., et al.: Small satellite REIMEI for auroral observations. Acta Astronaut. 69, 499–513 (2011). https://doi.org/10.1016/j.actaastro.2011.05.007
ADS
Article
Google Scholar
Füri, E., Marty, B.: Nitrogen isotope variations in the Solar System. Nature Geosci. 8, 515–522 (2015). https://doi.org/10.1038/ngeo2451
ADS
Article
Google Scholar
Marty, B., Chaussidon, M., Wiens, R.C., et al.: A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples. Science 332, 1533–1536 (2011). https://doi.org/10.1126/science.1204656
ADS
Article
Google Scholar
Robert, F., Gautier, D., Dubrulle, B.: The Solar System d/h ratio: observations and theories. Space Sci. Rev. 92, 201–224 (2000). https://doi.org/10.1023/A:1005291127595
ADS
Article
Google Scholar
Snodgrass, C., Jones, G.H.: The European Space Agency’s Comet Interceptor lies in wait. Nat Commun 10, 5418 (2019). https://doi.org/10.1038/s41467-019-13470-1
ADS
Article
Google Scholar
Fausch, R., Wurz, P., Tulej M. , Rohner, U.: CubeSatTOF: Planetary Atmospheres Analyzed with a 1U High-Performance Time-Of-Flight Mass Spectrometer, in proceedings of 34th Annual Small Satellite Conference, 1–6 August 2020, SSC20-WKIII-02, 10 pages (2020)
Jones, S., Paschalidis, N., Rodriguez, M., et al.: A compact ion and neutral mass spectrometer for measuring atmospheric composition with preliminary results from the Dellingr Mission, presentation at AGU Fall Meeting, abstract #A41I-2413, San Francisco, Dec. 2017, (2017)
Nicholas, A.C., Herrero, F.A., Stephan, A.W., Finne, T.: WINCS on-orbit performance results, in Proc. SPIE 9604, Solar Phys. Space Weather Instr., VI, 960404 (2015) https://doi.org/10.1117/12.2188403
Conde, M., Craven, J.D., Immel, T., et al.: Assimilated observations of thermospheric winds, the aurora, and ionospheric currents over Alaska. J. Geophys. Res. 106, 10493–10508 (2001). https://doi.org/10.1029/2000JA000135
ADS
Article
Google Scholar
Friis-Christensen, E., McHenry, M.A., Clauer, C.R., Vennerstrom, S.: (1988), Ionospheric traveling convection vortices observed near the polar cleft: a triggered response to sudden changes in the solar wind. Geophys. Res. Lett. 15, 253–256 (1988). https://doi.org/10.1029/GL015i003p00253
ADS
Article
Google Scholar
Kamide, Y., Richmond, A.D., Matsushita, S.: Estimation of ionospheric electric fields, ionospheric currents, and field-aligned currents from ground magnetic records. J. Geophys. Res. 86, 801–813 (1981). https://doi.org/10.1029/JA086iA02p00801
ADS
Article
Google Scholar
Altwegg, K., Balsiger, H., Calmonte, U., et al.: In situ mass spectrometry during the Lutetia flyby. Planet. Space Sci. 66, 173–178 (2012). https://doi.org/10.1016/j.pss.2011.08.011
ADS
Article
Google Scholar
Schläppi, B., Altwegg, K., Balsiger, H., et al.: The influence of spacecraft outgassing on the exploration of tenuous atmospheres with in situ mass spectrometry. J. Geophys. Res. 115, A12313 (2010). https://doi.org/10.1029/2010ja015734
ADS
Article
Google Scholar