Skip to main content
Log in

Calibration of γ-ray energy in an extensive air shower using the YangBaJing hybrid Array

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The observation of γ-ray sources above 100 TeV is one of the most intriguing fields in the investigation of the origin of cosmic rays. The YangBaJing Hybrid Array (YBJ-HA) experiment consist of scintillation detectors and underground muon detectors, the main objective is to measure gamma rays >10 TeV. In this study, we investigated an energy estimation method based on particle density and fixed distance from the shower axis by conducting a detailed Monte Carlo simulation of an extensive air shower using the YBJ-HA in Tibet. By comparing the results of the new method with those of other previously used estimators, we found that the new method can effectively improve the energy resolution of gamma rays. At an energy of 100 TeV for a zenith angle θ < 30°, the new energy estimation method has an improvement about 10% compared for the other estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abeysekara, A.U., et al.: Sensitivity of the high altitude water Cherenkov detector to sources of multi-TeV gamma rays. Astropart. Phys. 50-52, 26–32 (2013)

    Article  ADS  Google Scholar 

  2. Abeysekara, A., et al.: Observation of the crab nebula with the HAWC gamma-ray observatory. Astrophys. J. 843(1), 39 (2017)

    Article  ADS  Google Scholar 

  3. Abu-Zayyad, T., et al.: The cosmic-ray energy spectrum observed with the surface detector of the telescope array experiment. Astrophys. J. Lett. 768(1), L1 (2013)

    Article  ADS  Google Scholar 

  4. Aharonian, F.A.: Very High Energy Cosmic Gamma Radiation: A Crucial Window on the Extreme Universe, pp. 354–359. World Scientific Publishing Company, Singapore (2004)

  5. Aharonian, F.A.: The very-high-energy gamma-ray sky. Science. 315(5808), 70–72 (2007)

    Article  ADS  Google Scholar 

  6. Amenomori, M., et al.: Future plan for observation of cosmic gamma rays in the 100 TeV energy region with the Tibet air shower array: simulation and sensitivity. arXiv:0710.2752 (2007)

  7. Amenomori, M., et al.: Multi-TeV gamma-ray observation from the crab nebula using the Tibet-III air shower array finely tuned by the cosmic ray Moon’s shadow. Astrophys. J. Lett. 692(1), 61 (2009)

    Article  Google Scholar 

  8. Amenomori, M., et al.: First detection of photons with energy beyond 100 TeV from an astrophysical source. Phys. Rev. Lett. 123(5), 051101 (2019)

    Article  ADS  Google Scholar 

  9. Cao, Z., et al.: Introduction to large high altitude air shower observatory (LHAASO). Chin. Astron. Astrophys. 43, 457–478 (2019)

    Article  ADS  Google Scholar 

  10. Feng, Y.-L., et al.: Lateral distribution of EAS muons measured for the primary cosmic ray energy around 100 TeV. Chin. Phys. C. 43(7), 075002 (2019)

    Article  ADS  Google Scholar 

  11. Funk, S.: Ground- and space-based gamma-ray astronomy. Annu. Rev. Nucl. Part. Sci. 65(1), 245–277 (2015)

    Article  ADS  Google Scholar 

  12. Grenier, I.A., et al.: Gamma-ray pulsars: a gold mine. Comptes Rendus Physique. 16(6–7), 641–660 (2015)

    Article  ADS  Google Scholar 

  13. Heck, D., et al.: CORSIKA: A Monte Carlo code to simulate extensive air showers. Technical Note, FZKA 6019, Forschungszentrum, Karlsruhe, (1998)

  14. Kamata, K., et al.: The lateral and the angular structure functions of electron showers. Prog. Theor. Phys. Supp. 6, 93–155 (1958)

    Article  ADS  Google Scholar 

  15. Kawata, K., et al.: Energy determination of gamma-ray induced air showers observed by an extensive air shower array. Exp. Astron. 44(1), 1–9 (2017)

    Article  ADS  Google Scholar 

  16. Liu, C., et al.: Performance of the muon detector A under TIBET III array. Chin. Phys. C. 37(2), 026001 (2013)

    Article  ADS  Google Scholar 

  17. Lorenz, E., et al.: Very-high energy gamma-ray astronomy. Eur. Phys. J. H. 37(3), 459–513 (2012)

    Article  Google Scholar 

  18. Makoto, A., et al.: GEANT4: a simulation toolkit. Trans. Am. Nucl. Soc. 95(12/16), 757 (2006)

    Google Scholar 

  19. Ostapchenko, S.: QGSJET-II: towards reliable description of very high energy hadronic interactions. Nucl. Phys. B. 151(1), 143–146 (2004)

    Article  Google Scholar 

  20. Sinnis, G.: Water Cherenkov technology in gamma-ray astrophysics. Nucl. Instrum. Methods. Phys. Res. A. 623(1), 410–412 (2010)

    Article  ADS  Google Scholar 

  21. Wang, Z., et al.: Performance of a scintillation detector array operated with LHAASO-KM2A electronics. Exp. Astron. 45(3), 363–377 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the support of Cheng Liu,Yiqing Guo and Youliang Feng in the installation, debugging, and maintenance of the detectors. We also thank the support of the National Natural Science Foundation of China, and the Tibet University.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Funding

This work is supported in China by the National Natural Science Foundation (NSFC) (grant number11765019, 11963004, 11873005, 12047575), and Cultivation Foundation of Tibet University (grant number ZDTSJH19-13), and Funding support for the first-class discipline construction of Tibet University in 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoyuan Liu.

Ethics declarations

Conflicts of interest/competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Liu, M., Chen, . et al. Calibration of γ-ray energy in an extensive air shower using the YangBaJing hybrid Array. Exp Astron 52, 35–43 (2021). https://doi.org/10.1007/s10686-021-09780-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09780-2

Keywords

Navigation