Skip to main content
Log in

Research on the knee region of cosmic ray by using a novel type of electron–neutron detector array

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

By accurately measuring composition and energy spectrum of cosmic ray, the origin problem of so called “knee” region (energy >one PeV) can be solved. However, up to the present, the results of the spectrum in the knee region obtained by several previous experiments have shown obvious differences, so they cannot give effective evidence for judging the theoretical models on the origin of the knee. Recently, the Large High Altitude Air Shower Observatory (LHAASO) has reported several major breakthroughs and important results in astro-particle physics field. Relying on its advantages of wide-sky survey, high altitude location and large area detector arrays, the research content of LHAASO experiment mainly includes ultra high-energy gamma-ray astronomy, measurement of cosmic ray spectra in the knee region, searching for dark matter and new phenomena of particle physics at higher energy. The electron and thermal neutron detector (EN-Detector) is a new scintillator detector which applies thermal neutron detection technology to measure cosmic ray extensive air shower (EAS). This technology is an extension of LHAASO. The EN-Detector Array (ENDA) can highly efficiently measure thermal neutrons generated by secondary hadrons so called “skeleton” of EAS. In this paper, we perform the optimization of ENDA configuration, and obtain expectations on the ENDA results, including thermal neutron distribution, trigger efficiency and capability of cosmic ray composition separation. The obtained real data results are consistent with those by the Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aguilar, L. Ali Cavasonza, G. Ambrosi, L. Arruda, N. Attig, et al., The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II — Results from the first seven years, Phys. Rep. 894, 1 (2021)

    Article  CAS  ADS  Google Scholar 

  2. G. Aielli, C. Bacci, B. Bartoli, P. Bernardini, X. J. Bi, et al., Highlights from the ARGO-YBJ experiment, Nucl. Instrum. Methods Phys. Res. A 661(Suppl. 1), S50 (2012)

    Article  CAS  ADS  Google Scholar 

  3. X. H. Ma, et al., Chapter 1 LHAASO instruments and detector technology, Chin. Phys. C 46, 030001 (2022)

    Article  ADS  Google Scholar 

  4. Z. Cao, et al. (LHAASO Collaboration), Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 gamma-ray galactic sources, Nature 594, 33 (2021)

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Z. Cao, F. Aharonian, Q. An, Axikegu, L. X. Bai, et al., PETA-electron volt gamma-ray emission from the Crab nebula, Science 373(6553), 425 (2021)

    Article  PubMed  ADS  Google Scholar 

  6. Z. Cao, EAS arrays at high altitudes start the era of UHE-ray astronomy, Universe 7 (9), 339 (2021)

    Article  CAS  ADS  Google Scholar 

  7. P. Veres, E. Burns, E. Bissaldi, et al., GRB 221009A: Fermi GBM detection of an extraordinarily bright GRB, GRB Coordinates Network, No. 32636 (2022)

  8. S. Dichiara, J. D. Gropp, J. A. Kennea, et al., Swift J1913.1+1946 a new bright hard X-ray and optical transient, GRB Coordinates Network, No. 32632 (2022)

  9. Z. Cao, F. Aharonian, Q. An, Axikegu, L. X. Bai, et al., A tera-electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst 221009A, Science 380(6652), 1390 (2023)

    Article  PubMed  ADS  Google Scholar 

  10. J. R. Hörandel, Models of the knee in the energy spectrum of cosmic rays, Astropart. Phys. 21(3), 241 (2004)

    Article  ADS  Google Scholar 

  11. T. K. Gaisser, T. Stanev, and S. Tilav, Cosmic ray energy spectrum from measurements of air showers, Front. Phys. 8(6), 748 (2013)

    Article  ADS  Google Scholar 

  12. S. I. Nikolsky, The cause of the EAS spectrum break, Proc. 25th ICRC (Durban) 6, 105 (1997)

    Google Scholar 

  13. A. A. Petrukhin, Problem of the knee and very high energy muons, Proc. 27th ICRC (Hamburg), 1768 (2001)

  14. D. Kazanas and A. Nikolaidis, Cosmic ray “knee”: A herald of new physics? Proc. 27th ICRC (Hamburg), 1760 (2001)

  15. Y. V. Stenkin, Does the “knee” in primary cosmic ray spectrum exist, Mod. Phys. Lett. A 18(18), 1225 (2003)

    Article  CAS  ADS  Google Scholar 

  16. T. Antoni, W. D. Apel, A. F. Badea, K. Bekk, A. Bercuci, et al., KASCADE measurements of energy spectra for elemental groups of cosmic rays: Re sults and open problems, Astropart. Phys. 24(1–2), 1 (2005)

    Article  ADS  Google Scholar 

  17. M. Amenomori, S. Ayabe, D. Chen, S. W. Cui, Danzengluobu, et al., Are protons still dominant at the knee of the cosmic-ray energy spectrum, Phys. Lett. B 632(1), 58 (2006)

    Article  CAS  ADS  Google Scholar 

  18. B. Bartoli, P. Bernardini, X. J. Bi, Z. Cao, S. Catalanotti, et al, Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO, Phys. Rev. D 92(9), 092005 (2015)

    Article  ADS  Google Scholar 

  19. Y. V. Stenkin and J. F. Valdes-Galicia, On the neutron bursts origin, Mod. Phys. Lett. A 17(26), 1745 (2002)

    Article  CAS  ADS  Google Scholar 

  20. Y. V. Stenkin, On the PRISMA project, Nucl. Phys. B Proc. Suppl. 196, 293 (2009)

    Article  CAS  ADS  Google Scholar 

  21. Y V Stenkin, V V Alekseenko, D M Gromushkin, et al., Thermal neutron flux produced by EAS at various altitudes, Chin. Phys. C 37(1), 015001 (2013)

    Article  CAS  ADS  Google Scholar 

  22. Y. V. Stenkin, D. D. Djappuev, and J. F. Valdés-Galicia, Neutrons in extensive air showers, Phys. At. Nucl. 70(6), 1088 (2007)

    Article  CAS  Google Scholar 

  23. Y. V. Stenkin, Thermal neutrons in Eas: A new dimension in Eas study, Nucl. Phys. B Proc. Suppl. 175–176, 326 (2008)

    Article  ADS  Google Scholar 

  24. B. Bartoli, P. Bernardini, X. J. Bi, Z. Cao, S. Catalanotti, et al., Detection of thermal neutrons with the PRISMA-YBJ array in extensive air showers selected by the ARGO-YBJ experiment, Astropart. Phys. 81, 49 (2016)

    Article  ADS  Google Scholar 

  25. Y. V. Stenkin, V. Alekseenko, Z. Y. Cai, Z. Cao, C. Cattaneo, S. Cui, E. Giroletti, D. Gromushkin, C. Guo, X. Guo, H. He, Y. Liu, X. Ma, O. Shchegolev, P. Vallania, C. Vigorito, and J. Zhao, Seasonal and lunar month periods observed in natural neutron flux at high altitude, Pure Appl. Geophys. 174(7), 2763 (2017)

    Article  ADS  Google Scholar 

  26. Y. V. Stenkin, V. Alekseenko, Z. Y. Cai, Z. Cao, C. Cattaneo, S. Cui, P. Firstov, E. Giroletti, X. Guo, H. He, Y. Liu, X. Ma, O. Shchegolev, P. Vallania, C. Vigorito, Y. Yanin, and J. Zhao, Response of the environmental thermal neutron flux to earthquakes, J. Environ. Radioact. 208–209, 105981 (2019)

    Article  PubMed  Google Scholar 

  27. B. B. Li, V. V. Alekseenko, S. Cui, T. L. Chen, S. H. Feng, Q. Gao, Y. Liu, Q. C. Huang, Y. Y. He, M. Y. Liu, X. H. Ma, E. I. Pozdnyakov, O. B. Shchegolev, F. Z. Shen, Y. V. Stenkin, V. I. Stepanov, Y. V. Yanin, J. D. Yao, and R. Zhou, EAS thermal neutron detection with the PRISMA-LHAASO-16 experiment, J. Instrum. 12(12), P12028 (2017)

    Article  Google Scholar 

  28. M. Y. Liu, V. Alekseenko, S. W. Cui, T. L. Chen, Dangzengluobu, Q. Gao, D. Kuleshov, K. Levochkin, Y. Liu, B. B. Li, X. H. Ma, O. Shchegolev, C. Shi, Y. Stenkin, and V. Stepanov, Performance of the thermal neutron detector array in Yangbajing, Tibet for cosmic ray EAS detection, Astrophys. Space Sci. 365(7), 123 (2020)

    Article  ADS  Google Scholar 

  29. B. B. Li, S. W. Cui, C. Shi, F. Yang, L. W. Zhang, Y. Liu, X. H. Ma, W. Gao, L. Q. Yin, Y. V. Stenkin, D. A. Kuleshov, K. R. Levochkin, O. B. Shchegolev, T. L. Chen, Danzengluobu, M. Y. Liu, and D. X. Xiao, Electron neutron detector array (ENDA), Phys. At. Nucl. 84(6), 941 (2021)

    Article  CAS  Google Scholar 

  30. F. Yang, X. H. Ma, H. K. Chen, T. L. Chen, S. W. Cui, Danzengluobu, W. Gao, D. Kuleshov, K. Kurinov, B. B. Li, M. Y. Liu, Y. Liu, O. Shchegolev, Y. Stenkin, D. X. Xiao, L. Q. Yin, and L. W. Zhang, Correlation between thermal neutrons and soil moisture measured by ENDA, J. Instrum. 18(5), P05020 (2023)

    Article  Google Scholar 

  31. D. X. Xiao, T. L. Chen, S. W. Cui, Danzengluobu, W. Gao, D. Kuleshov, K. Kurinov, A. Lagutkina, K. Levochkin, B. B. Li, M. Y. Liu, Y. Liu, X. H. Ma, O. Shchegolev, Y. Stenkin, F. Yang, L. Q. Yin, and L. W. Zhang, Influence of soil environment on performance of EAS electron–neutron detector array, Astrophys. Space Sci. 367(8), 75 (2022)

    Article  ADS  Google Scholar 

  32. D. Heck, Hadronic interaction models and the air shower simulation program CORSIKA, Proc. ICRC Hamburg Vol. 233, 19 (2001)

    Google Scholar 

  33. J Allison, K Amako, J Apostolakis, et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53(1), 270 (2006)

    Article  ADS  Google Scholar 

  34. H. Y. Zhang, H. H. He, and C. F. Feng, Approaches to composition independent energy reconstruction of cosmic rays based on the LHAASO-KM2A detector, Phys. Rev. D 106(12), 123028 (2022)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, Nos. 12320101005, 12373105, U2031103, 12205244, and 11963004) and Hebei Natural Science Foundation (No. A2019207004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Hua Ma or Shu-Wang Cui.

Additional information

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, BB., Ma, XH., Cui, SW. et al. Research on the knee region of cosmic ray by using a novel type of electron–neutron detector array. Front. Phys. 19, 44200 (2024). https://doi.org/10.1007/s11467-023-1383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1383-2

Keywords

Navigation