Skip to main content
Log in

Machine learning on compton event identification for a nano-satellite mission

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Nano-satellite MeV telescope is becoming attractive nowadays. The dominant interaction mechanism of the electromagnetic spectrum around 1MeV is Compton scattering. However, the gamma-rays generated by primary particles hitting the atmosphere and the pair production events are the two significant background events when the satellite is operating in Low Earth Orbit. In this paper, we applied Machine Learning models to identify and reject the two troublesome background event types. Ensemble technique and imbalance solution are explored in order to obtain a better performance. Experiments demonstrated that the proposed methods can discriminate the pair events with a high accuracy, and the satellite’s sensitivity has also been improved dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. This is an unproven hypothesis because we don’t consider the denominator TP, but we suppose that this hypothesis is valid in our numerical range. Here what we want is to borrow some techniques (will be introduced shortly) that help to improve ξ for achieving a satisfied η in training ML model process.

  2. These methods are not applicable for random forest model.

References

  1. Abadi, M., Barham, P., Chen, J., et al.: TensorFlow: A system for large-scale machine learning. 12th USENIX Symp. Operating Syst. Des. Implement 16, 265–283 (2016)

    Google Scholar 

  2. Andritschke, R., Zoglauer, A., Kanbach, G., et al.: The Compton and pair creation telescope MEGA. Exp. Astron. 20(1-3), 395–403 (2005)

    Article  ADS  Google Scholar 

  3. Atwood, W., Abdo, A.A., Ackermann, M., et al.: The large area telescope on the Fermi gamma-ray space telescope mission. Astrophys. J. 697(2), 1071 (2009)

    Article  ADS  Google Scholar 

  4. Berlato, F.: Design and Optimization Around 1 MeV of a Calorimeter for a Cubesat Mission. Università degli Studi di Padova, Master’s thesis (2016)

    Google Scholar 

  5. De Angelis, A., Tatischeff, V., Tavani, M., et al.: The e-ASTROGAM mission. Exp. Astron. 44(1), 25–82 (2017)

    Article  ADS  Google Scholar 

  6. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. Adv. Neural Inf. Process. Syst, 1486–1494 (2015)

  7. Dietterich, T.G.: Ensemble learning. Handbook Brain Theory Neural Netw. 2, 110–125 (2002)

    Google Scholar 

  8. Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and an application to boosting. In: European Conference on Computational Learning Theory, pp. 23–37 (1995)

  9. Garrido Beltrán, L., Gascón Fora, D., Graciani Díaz, R., et al.: Design concepts for the Cherenkov telescope array CTA: An advanced facility for ground-based high-energy gamma-ray astronomy. Exp. Astron. 32(3), 193–316 (2011)

    Article  ADS  Google Scholar 

  10. Gehrels, N., Chincarini, G., Giommi, P., et al.: The Swift gamma-ray burst mission. Astrophys. J. 611(2), 1005 (2004)

    Article  ADS  Google Scholar 

  11. Géron, A.: Hands-on machine learning with Scikit-Learn and TensorFlow: Concepts, tools and techniques to build intelligent systems (2017)

  12. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

  13. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

  14. Harrison, F.A., Craig, W.W., Christensen, F.E., et al.: The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission. Astrophys. J. 770(2), 103 (2013)

    Article  ADS  Google Scholar 

  15. Hinton, J.: Ground-based gamma-ray astronomy with Cherenkov telescopes. J. Phys. 11(5), 055005 (2009)

    Google Scholar 

  16. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

  17. Janocha, K., Czarnecki, W.M.: On loss functions for deep neural networks in classification. Schedae Informaticae 25, 49–59 (2016)

    Google Scholar 

  18. Japkowicz, N., Stephen, S.: The class imbalance problem: A systematic study. Intell. Data Anal. 6(5), 429–449 (2002)

    Article  MATH  Google Scholar 

  19. Jiménez, D.: Dynamically weighted ensemble neural networks for classification. In: IEEE International Joint Conference on Neural Networks Proceedings, vol. 1, pp. 753–756. IEEE (1998)

  20. Kam, H.T.: Random decision forest. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, pp. 14–18 (1995)

  21. Lucchetta, G.: Design and Optimization Around 1 MeV of a Tracker for a CubeSat Mission. Università degli Studi di Padova, Master’s thesis (2016)

    Google Scholar 

  22. Lucchetta, G., Berlato, F., Rando, R., et al.: Scientific performance of a nano-satellite MeV telescope. Astron. J. 153(5), 237 (2017)

    Article  ADS  Google Scholar 

  23. Mizumoto, T., Matsuoka, Y., Mizumura, Y., et al.: New readout and data-acquisition system in an electron-tracking Compton camera for MeV gamma-ray astronomy (SMILE-II). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 800, 40–50 (2015)

    Article  ADS  Google Scholar 

  24. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, pp. 807–814 (2010)

  25. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2642–2651 (2017)

  26. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Rumelhart, D.E., Hinton, G.E., Williams, R.J., et al.: Learning representations by back-propagating errors. Cogn. Model. 5(3), 1 (1988)

    MATH  Google Scholar 

  28. Salimans, T., Goodfellow, I., Zaremba, W., et al.: Improved techniques for training GANs. Adv. Neural Inf. Process. Syst., 2234–2242 (2016)

  29. Schoenfelder, V., Aarts, H., Bennett, K., et al.: Instrument description and performance of the imaging gamma-ray telescope COMPTEL aboard the Compton gamma-ray observatory. Astrophys. J. Suppl. Ser. 86, 657–692 (1993)

    Article  ADS  Google Scholar 

  30. Sønderby, C.K., Caballero, J., Theis, L., et al.: Amortised map inference for image super-resolution. International Conference on Learning Representations (2017)

  31. Srivastava, N., Hinton, G.E., Krizhevsky, A., et al.: Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Sutskever, I., Martens, J., Dahl, G., et al.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp. 1139–1147 (2013)

  33. Tavani, M., Barbiellini, G., Argan, A., et al.: The AGILE mission. Astron. Astrophys. 502(3), 995–1013 (2009)

    Article  ADS  Google Scholar 

  34. Winkler, C., Diehl, R., Ubertini, P., et al.: INTEGRAL: Science highlights and future prospects. Space Sci. Rev. 161(1–4), 149–177 (2011)

    Article  ADS  Google Scholar 

  35. Zhang, Y., Zhang, H., Cai, J., et al.: A weighted voting classifier based on differential evolution. Abstract Appl. Anal., 2014 (2014)

  36. Zoglauer, A., Andritschke, R., Boggs, S.E., et al.: MEGAlib–simulation and data analysis for low-to-medium-energy gamma-ray telescopes. In: Proceedings of the International Society for Optical Engineering, vol. 7011, 70113F (2008)

  37. Zoglauer, A.C.: First Light for the Next Generation of Compton and Pair Telescopes. Ph.D. thesis, Technische Universität München (2005)

    Google Scholar 

Download references

Acknowledgements

Author Haitao Cao would like to acknowledge the scholarship supported by Guangzhou University, China and the excellent research facilities provided by Istituto Nazionale di Fisica Nucleare, Padova, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Cao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Bastieri, D., Rando, R. et al. Machine learning on compton event identification for a nano-satellite mission. Exp Astron 47, 129–144 (2019). https://doi.org/10.1007/s10686-019-09620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-019-09620-4

Keywords

Navigation