Skip to main content
Log in

Main beam modeling for large irregular arrays

The SKA1-LOW telescope case

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Large radio telescopes in the 21st century such as the Low-Frequency Array (LOFAR) or the Murchison Widefield Array (MWA) make use of phased aperture arrays of antennas to achieve superb survey speeds. The Square Kilometer Array low frequency instrument (SKA1-LOW) will consist of a collection of non-regular phased array systems. The prediction of the main beam of these arrays using a few coefficients is crucial for the calibration of the telescope. An effective approach to model the main beam and first few sidelobes for large non-regular arrays is presented. The approach exploits Zernike polynomials to represent the array pattern. Starting from the current defined on an equivalence plane located just above the array, the pattern is expressed as a sum of Fourier transforms of Zernike functions of different orders. The coefficients for Zernike polynomials are derived by two different means: least-squares and analytical approaches. The analysis shows that both approaches provide a similar performance for representing the main beam and first few sidelobes. Moreover, numerical results for different array configurations are provided, which demonstrate the performance of the proposed method, also for arrays with shapes far from circular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dewdney, P.E., Hall, P.J., Schilizzi, R.T., Lazio, T.J.L.W.: The square kilometre array. Proc. IEEE 97(8), 1482–1496 (2009)

    Article  ADS  Google Scholar 

  2. The Square Kilometer Array. [Online]. Available: https://www.skatelescope.org/

  3. de Lera Acedo, E. et al.: SKALA, a log-periodic array antenna for the SKA-low instrument: design, simulations, tests and system considerations. Exp. Astron. 39(3), 567–594 (2015)

    Article  ADS  Google Scholar 

  4. Pozar, D.M.: The active element pattern. IEEE Trans. Antennas Propag. 42(8), 1176–1178 (1994)

    Article  ADS  Google Scholar 

  5. Maaskant, R., Ivashina, M.V., Wijnholds, S.J., Warnick, K.F.: Efficient prediction of array element patterns using physical-based expansion and a single far-field measurement. IEEE Trans. Antenna Propag. 60(8), 3614–3621 (2012)

    Article  ADS  MATH  Google Scholar 

  6. Young, A., Maaskant, R., Ivashina, M.V., de Villiers, D.I.L., Davidson, D.B.: Accurate beam prediction through characteristic basis function patterns for the MeerKAT/SKA radio telescope antenna. IEEE Trans. Antenna Propag. 61(5), 2466–2473 (2013)

    Article  ADS  Google Scholar 

  7. Craeye, C. et al.: Main beam representation in non-regular array. presented at the 3GC-II Workshop, Portugal (2011)

    Google Scholar 

  8. Gonzalez-Ovejero, D., Craeye, C.: Interpolatory macro basis functions analysis of non-periodic arrays. IEEE Trans. Antenna Propag. 59(8), 3117–3122 (2011)

    Article  ADS  Google Scholar 

  9. Ludick, D.J., Maaskant, R., Davidson, D.B., Jakobus, U., Mittra, R., de Villiers, D.: Efficient analysis of large aperiodic antenna arrays using the domain green’s function method. IEEE Trans. Antenna Propag. 62(4), 1579–1588 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Suter, E., Mosig, J.R.: A subdomain multilevel approach for the efficient MoM analysis of large planar Antennas. Microw. Opt. Technol. Lett. 26(4), 270–277 (2000)

    Article  Google Scholar 

  11. Hansen, J.E., Spherical near-field antenna measurement. London, Peter Peregrinus Ltd. (1988)

  12. de Lera Acedo, E., Razavi-Ghods, N., Ovejéro, D.G., Sarkis, R., Craeye, C.: Compact representation of the effects of mutual coupling in non-regular arrays devoted to the SKA telescope. In: Proceedings of the International Conference in Electromagnitic Advanced Applied (ICEAA), pp. 390–393, Torino (2011)

  13. Bui-Van, H., Craeye, C., Razavi-Ghods, N., de Lera Acedo, E.: Correlation between SKA1-LOW stations including mutual coupling. In: Proceedings of the International Conference in Electromagnitic Advanced Applied (ICEAA), pp. 1–3, Verona (2017)

  14. Jensen, F., Frandsen, A.: On the number of modes in spherical wave expansions. In: Proceedings of 26th AMTA, vol. 489–494, Stone Mountain Park (2004)

  15. Craeye, C., Gonzalez-Ovejero, D., Dardenne, X.: Efficient numerical analysis of arrays of identical element with complex shapes. J. Appl. Comput. Electromag. Soc. (ACES) 24(2) (2009)

  16. Queuning, Q., Raucy, C., Craeye, C., Colin-Beltran, E., de Lera Acedo, E.: Mutual coupling analysis in non-regular arrays of SKALA antennas with the HARP approach. IEEE International Symposium on Antennas and Propagation (APS) (2015)

  17. Bui-Van, H., Abraham, J., Arts, M., Gueuning, Q., Raucy, C., Gonzalez-Ovejero, D., de Lera Acedo, E., Craeye, C.: Fast and Accurate Simulation Technique for Large Irregular Arrays, IEEE Trans. Antennas Propag. (submitted), Available: arXiv:1702.03781

  18. Ludwig, A.: The definition of cross polarization. IEEE Trans. Antenna Propag. 21(1), 116–119 (1973)

    Article  ADS  Google Scholar 

  19. Kildal, P.S.: Foundations of antenna engineering: a unified approach for line-of-side and multipath, 2015. [Online]. Available at: http://www.kildal.se/

  20. Poggio, A.J., Miller, E.K., Mittra, R.: Integral equation solutions of three-dimensional scattering problems, Computer Techniques for Electromagnetics. Pergamon Press, Oxford (1973)

    Google Scholar 

  21. Harrington, R.F.: Time-harmonic electromagnetic fields. Wiley-IEEE Press (2001)

  22. Savov, S.V.: A Taylor series expansion method for calculation of the radiation integral for a circular aperture. IEEE Trans. Antenna Propag. 51(12), 3298–3302 (2003)

    Article  ADS  Google Scholar 

  23. Zernike, F.: Beugungstheorie des schneidenverfahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1(7), 689–704 (1934)

    Article  ADS  MATH  Google Scholar 

  24. Rahmat-Samii, Y., Galindo-Israel, V.: Shaped reflector antenna analysis using the Jacobi-Bessel series. IEEE Trans. Antenna Propag. 28(4), 425–435 (1980)

    Article  ADS  Google Scholar 

  25. Hewitt, E., Hewitt, R.E.: The Gibbs-Wilbraham phenomenon: An episode in fourier analysis. Arch. Hist. Exact Sci. 21(2), 129–160 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. SKA Office, SKA1 Level 0 science requirement (revision 7), Available: https://skatelescope.org/key-documents/

  27. SKA1-LOW antenna evaluation criteria (2017)

  28. WIPL-D - Electromagnetic Simulation Software. Available: http://www.wipl-d.com/

Download references

Acknowledgments

The authors would like to thank Quentin Queuning for the mesh of SKALA, David González-Ovejero for initiating the interpolatory method, and Michel Arts at ASTRON, the Netherlands for providing the WIPL-D simulation data. This research was supported by the Science & Technology Facilities Council (UK) grant: SKA, ST/M001393/1 and the University of Cambridge, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha Bui-Van.

Appendix I

Appendix I

We consider a 2D aperture in the x y −plane with an equivalent current distribution \(I^{e} \equiv ({I^{e}_{x}},{I^{e}_{y}})\), with a Fourier transform given by f t ≡ (f t x , f t y ). The radiation pattern G ≡ (G x , G y , G z ) of the aperture can be expressed as the following projection [19]

$$ \bar{G} = C \left( \bar{f_{t}} - \hat{u} (\bar{f_{t}}.\hat{u}) \right) $$
(16)

where C = −j k η/4π with η is the free-space impedance. The inverse Fourier transform of G x corresponds to the “pseudo-current” I x (see (13)). Likewise I y and G y are linked by a Fourier transform. From (16), the G x and G y components of the pattern are obtained as

$$\begin{array}{@{}rcl@{}} G_{x} &=& C \left( f_{tx} - u_{x}(f_{tx}u_{x} + f_{ty}u_{y}) \right) \end{array} $$
(17)
$$\begin{array}{@{}rcl@{}} G_{y} &=& C \left( f_{ty} - u_{y}(f_{tx}u_{x} + f_{ty}u_{y}) \right) \end{array} $$
(18)

It is noted that the G z pattern is automatically obtained from G x and G y patterns via the relation \(\bar {G}.\hat {u} = G_{x}u_{x} + G_{y}u_{y} + G_{z}u_{z} = 0\). The above expression is consistent with Equation (11) in [18], noting that \(\hat {u} \equiv (u_{x},u_{y},u_{z}) = (\sin \theta \cos \phi ,\sin \theta \sin \phi ,\cos \theta )\).

From (17) and (18), one can easily express (f t x , f t y ) in terms of (G x , G y ) as

$$ \left[\begin{array}{l} f_{tx} \\ f_{ty} \end{array}\right] =\frac{1}{{C\,{u^{2}_{z}}}} \left[\begin{array}{cc} 1-{{u^{2}_{y}}} \,\,\,\,\,\,\,\,\, {u_{x}u_{y}} \\ \,\, {u_{x}u_{y}} \,\,\,\,\,\,\,\,\, \,\,\, 1-{{u^{2}_{x}}} \end{array}\right] \left[\begin{array}{l} G_{x} \\ G_{y} \end{array}\right] $$
(19)

The left-hand side of (19) is the Fourier transform of equivalent currents, while [G x G y ]T is the Fourier transform of the “pseudo current” used in this paper. (19) provides the link between these two currents. It would also be possible to start from physical or equivalent currents (if available), and to model the pattern (f t x , f t y ) using the technique presented in this paper. The radiation pattern G x , G y are then obtained from (17) and (18). For arrays of complex antennas with the available radiation pattern, the “pseudo-current” probably is the most straightforward way, because it only involves a Fourier transform link without any projection.

As a reminder, equivalent electric \(\bar {I}^{e}\) and magnetic currents \(\bar {M}^{e}\) [19, Section 4.3; 21], on the surface enclosing electromagnetic sources correspond to \(\hat {n}\times \bar {H}\) and \(\bar {E}\times \hat {n}\), where \(\bar {E}\) and \(\bar {H}\) are electric and magnetic fields, \(\hat {n}\) is the normal unit vector to the surface. When the surface corresponds an infinite plane, the magnetic equivalent current \(\bar {M}^{e}\) can be omitted if the equivalent electric currents are doubled [21].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui-Van, H., Craeye, C. & de Lera Acedo, E. Main beam modeling for large irregular arrays. Exp Astron 44, 239–258 (2017). https://doi.org/10.1007/s10686-017-9565-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-017-9565-y

Keywords

Navigation