Skip to main content

OSS (Outer Solar System): a fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt

Abstract

The present OSS (Outer Solar System) mission continues a long and bright tradition by associating the communities of fundamental physics and planetary sciences in a single mission with ambitious goals in both domains. OSS is an M-class mission to explore the Neptune system almost half a century after the flyby of the Voyager 2 spacecraft. Several discoveries were made by Voyager 2, including the Great Dark Spot (which has now disappeared) and Triton’s geysers. Voyager 2 revealed the dynamics of Neptune’s atmosphere and found four rings and evidence of ring arcs above Neptune. Benefiting from a greatly improved instrumentation, a mission as OSS would result in a striking advance in the study of the farthest planet of the solar system. Furthermore, OSS would provide a unique opportunity to visit a selected Kuiper Belt object subsequent to the passage of the Neptunian system. OSS would help consolidate the hypothesis of the origin of Triton as a Kuiper Belt object captured by Neptune, and to improve our knowledge on the formation of the solar system. The OSS probe would carry instruments allowing precise tracking of the spacecraft during the cruise. It would facilitate the best possible tests of the laws of gravity in deep space. These objectives are important for fundamental physics, as they test General Relativity, our current theoretical description of gravitation, but also for cosmology, astrophysics and planetary science, as General Relativity is used as a tool in all these domains. In particular, the models of solar system formation uses General Relativity to describe the crucial role of gravity. OSS is proposed as an international cooperation between ESA and NASA, giving the capability for ESA to launch an M-class mission towards the farthest planet of the solar system, and to a Kuiper Belt object. The proposed mission profile would allow to deliver a 500 kg class spacecraft. The design of the probe is mainly constrained by the deep space gravity test in order to minimize the perturbation of the accelerometer measurement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    ESA Fundamental Physics Roadmap Advisory Team, A Roadmap for Fundamental Physics in Space, 2010. Available at [08/23/2010]: http://sci.esa.int/fprat

References

  1. 1.

    Abernathy, M.R., Tegler, S.C., Grundy, W.M., Licandro, J., Romanishin, W., Cornelison, D., Vilas, F.: Digging into the surface of the icy dwarf planet Eris. Icarus 199, 520–525 (2009). doi:10.1016/j.icarus.2008.10.016, arXiv:0811.0825

    ADS  Article  Google Scholar 

  2. 2.

    Acuña, M.H.: Space-based magnetometers. Rev. Sci. Instrum. 73, 3717–3736 (2002). doi:10.1063/1.1510570

    ADS  Article  Google Scholar 

  3. 3.

    Adelberger, E.G., Heckel, B.R., Nelson, A.E.: Tests of the gravitational inverse-square law. Annu. Rev. Nucl. Part. Sci. 53, 77–121 (2003). doi:10.1146/annurev.nucl.53.041002.110503, arXiv:hep-ph/0307284

    ADS  Article  Google Scholar 

  4. 4.

    Aguirre, A., Burgess, C.P., Friedland, A., Nolte, D.: Astrophysical constraints on modifying gravity at large distances. Classical Quant. Grav. 18, 223 (2001). doi:10.1088/0264-9381/18/23/202, arXiv:hep-ph/0105083

    ADS  Article  Google Scholar 

  5. 5.

    Anderson, J., Nieto, M.: Astrometric solar-system anomalies. Proc. Int. Astron. Union 5(Symposium S261), 189–197 (2009). doi:10.1017/S1743921309990378, http://journals.cambridge.org/article_S1743921309990378

    Article  Google Scholar 

  6. 6.

    Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M., Turyshev, S.G.: Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration. Phys. Rev. Lett. 81(14), 2858–2861 (1998). doi:10.1103/PhysRevLett.81.2858

    ADS  Article  Google Scholar 

  7. 7.

    Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M., Turyshev, S.G.: Study of the anomalous acceleration of Pioneer 10 and 11. Phys. Rev. D 65(8), 082004 (2002). doi:10.1103/PhysRevD.65.082004

    ADS  Article  Google Scholar 

  8. 8.

    Asmar, S.W., Armstrong, J.W., Iess, L., Tortora, P.: Spacecraft Doppler tracking: noise budget and accuracy achievable in precision radio science observations. Rad. Sci. 40, RS2001 (2005). doi:10.1029/2004RS003101

    ADS  Article  Google Scholar 

  9. 9.

    Aurnou, J., Heimpel, M., Wicht, J.: The effects of vigorous mixing in a convective model of zonal flow on the ice giants. Icarus 190, 110–126 (2007). doi:10.1016/j.icarus.2007.02.024

    ADS  Article  Google Scholar 

  10. 10.

    Auster, H.U., Glassmeier, K.H., Magnes, W., Aydogar, O., Baumjohann, W., Constantinescu, D., Fischer, D., Fornacon, K.H., Georgescu, E., Harvey, P., Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka, K., Plaschke, F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., Wiedemann, M.: The THEMIS fluxgate magnetometer. Space Sci. Rev. 141, 235–264 (2008). doi:10.1007/s11214-008-9365-9

    ADS  Article  Google Scholar 

  11. 11.

    Bagenal, F.: Giant planet magnetospheres. Annu. Rev. Earth Planet. Sci. 20, 289–328 (1992). doi:10.1146/annurev.ea.20.050192.001445

    ADS  Article  Google Scholar 

  12. 12.

    Balogh, A.: Planetary magnetic field measurements: missions and instrumentation. Space Sci. Rev. 152, 23–97 (2010). doi:10.1007/s11214-010-9643-1

    ADS  Article  Google Scholar 

  13. 13.

    Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., Morbidelli, A.: The Solar System beyond Neptune: overview and perspectives. In: Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., Morbidelli, A., Dotson., R. (eds.) The Solar System Beyond Neptune, pp. 3–10 (2008)

  14. 14.

    Barucci, M.A., Brown, M.E., Emery, J.P., Merlin, F.: Composition and surface properties of transneptunian objects and centaurs. In: Barucci, M.A., Boehnhardt., H., Cruikshank., D.P., Morbidelli, A., Dotson, R. (eds.) The Solar System Beyond Neptune, pp. 143–160 (2008)

  15. 15.

    Bertaux, J.L., Fonteyn, D., Korablev, O., Chassefière, E., Dimarellis, E., Dubois, J.P., Hauchecorne, A., Cabane, M., Rannou, P., Levasseur-Regourd, A.C., Cernogora, G., Quemerais, E., Hermans, C., Kockarts, G., Lippens, C., Maziere, M.D., Moreau, D., Muller, C., Neefs, B., Simon, P.C., Forget, F., Hourdin, F., Talagrand, O., Moroz, V.I., Rodin, A., Sandel, B., Stern, A.: The study of the martian atmosphere from top to bottom with SPICAM light on Mars Express. Planet. Space Sci. 48, 1303–1320 (2000). doi:10.1016/S0032-0633(00)00111-2

    ADS  Article  Google Scholar 

  16. 16.

    Bertaux, J.L., Nevejans, D., Korablev, O., Villard, E., Quémerais, E., Neefs, E., Montmessin, F., Leblanc, F., Dubois, J.P., Dimarellis, E., Hauchecorne, A., Lefèvre, F., Rannou, P., Chaufray, J.Y., Cabane, M., Cernogora, G., Souchon, G., Semelin, F., Reberac, A., van Ransbeek, E., Berkenbosch, S., Clairquin, R., Muller, C., Forget, F., Hourdin, F., Talagrand, O., Rodin, A., Fedorova, A., Stepanov, A., Vinogradov, I., Kiselev, A., Kalinnikov, Y., Durry, G., Sandel, B., Stern, A., Gérard, J.C.: SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 55, 1673–1700 (2007). doi:10.1016/j.pss.2007.01.016

    ADS  Article  Google Scholar 

  17. 17.

    Bertolami, O., Páramos, J.: The Pioneer anomaly in the context of the braneworld scenario. Classical Quant. Grav. 21, 3309–3321 (2004). doi:10.1088/0264-9381/21/13/013, arXiv:gr-qc/0310101

    ADS  MATH  Article  Google Scholar 

  18. 18.

    Bertolami, O., Böhmer, C.G., Harko, T., Lobo, F.S.N.: Extra force in f(r) modified theories of gravity. Phys. Rev. D 75(10), 104016 (2007). doi:10.1103/PhysRevD.75.104016

    MathSciNet  ADS  Article  Google Scholar 

  19. 19.

    Bertolami, O., Francisco, F., Gil, P.J.S., Páramos, J.: Thermal analysis of the pioneer anomaly: A method to estimate radiative momentum transfer. Phys. Rev. D 78(10), 103001 (2008). doi:10.1103/PhysRevD.78.103001

    ADS  Article  Google Scholar 

  20. 20.

    Bertotti, B., Iess, L., Tortora, P.: A. test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376 (2003). doi:10.1038/nature01997

    ADS  Article  Google Scholar 

  21. 21.

    Blanc, M., Moura, D., Alibert, Y., et al.: Tracing the origins of the Solar System. In: Favata, F., Sanz-Forcada, J., Giménez, A., Battrick, B. (eds.) 39th ESLAB Symposium on Trends in Space Science and Cosmic Vision 2020, ESA Special Publication, vol. 588, p. 213 (2005)

  22. 22.

    Bougeret, J.L., Goetz, K., Kaiser, M.L., Bale, S.D., Kellogg, P.J., Maksimovic, M., Monge, N., Monson, S.J., Astier, P.L., Davy, S., Dekkali, M., Hinze, J.J., Manning, R.E., Aguilar-Rodriguez, E., Bonnin, X., Briand, C., Cairns, I.H., Cattell, C.A., Cecconi, B., Eastwood, J., Ergun, R.E., Fainberg, J., Hoang, S., Huttunen, K.E.J., Krucker, S., Lecacheux, A., MacDowall, R.J., Macher, W., Mangeney, A., Meetre, C.A., Moussas, X., Nguyen, Q.N., Oswald, T.H., Pulupa, M., Reiner, M.J., Robinson, P.A., Rucker, H., Salem, C., Santolik, O., Silvis, J.M., Ullrich, R., Zarka, P., Zouganelis, I.: S/WAVES: the radio and plasma wave investigation on the STEREO mission. Space Sci. Rev. 136, 487–528 (2008). doi:10.1007/s11214-007-9298-8

    ADS  Article  Google Scholar 

  23. 23.

    Brownstein, J.R., Moffat, J.W.: Gravitational solution to the Pioneer 10/11 anomaly. Classical Quant. Grav. 23, 3427–3436 (2006). doi:10.1088/0264-9381/23/10/013, arXiv:gr-qc/0511026

    ADS  MATH  Article  Google Scholar 

  24. 24.

    Brucker, M.J., Grundy, W.M., Stansberry, J.A., Spencer, J.R., Sheppard, S.S., Chiang, E.I., Buie, M.W.: High albedos of low inclination Classical Kuiper belt objects. Icarus 201, 284–294 (2009). doi:10.1016/j.icarus.2008.12.040, arXiv:0812.4290

    ADS  Article  Google Scholar 

  25. 25.

    Bruneton, J.P., Esposito-Farèse, G.: Field-theoretical formulations of mond-like gravity. Phys. Rev. D 76(12), 124012 (2007). doi:10.1103/PhysRevD.76.124012

    ADS  Article  Google Scholar 

  26. 26.

    Burns, J.A., Cuzzi, J.N.: Our local astrophysical laboratory. Science 312(5781), 1753–1755 (2006)

    Article  Google Scholar 

  27. 27.

    Carr, C., Brown, P., Zhang, T.L., Gloag, J., Horbury, T., Lucek, E., Magnes, W., O’Brien, H., Oddy, T., Auster, U., Austin, P., Aydogar, O., Balogh, A., Baumjohann, W., Beek, T., Eichelberger, H., Fornacon, K., Georgescu, E., Glassmeier, K., Ludlam, M., Nakamura, R., Richter, I.: The Double Star magnetic field investigation: instrument design, performance and highlights of the first year’s observations. Ann. Geophys. 23, 2713–2732 (2005). doi:10.5194/angeo-23-2713-2005

    ADS  Article  Google Scholar 

  28. 28.

    Chan, J., Wood, J.G., Schreiber, J.G.: Development of advanced stirling radioisotope generator for space exploration. In: El-Genik, M.S. (ed.) Space Technology and Applications International Forum-STAIF 2007, American Institute of Physics Conference Series, vol. 880, pp. 615–623 (2007). doi:10.1063/1.2437500

  29. 29.

    Christophe, B., Andersen, P.H., Anderson, J.D., Asmar, S., Bério, P., Bertolami, O., Bingham, R., Bondu, F., Bouyer, P., Bremer, S., Courty, J., Dittus, H., Foulon, B., Gil, P., Johann, U., Jordan, J.F., Kent, B., Lämmerzahl, C., Lévy, A., Métris, G., Olsen, O., Pàramos, J., Prestage, J.D., Progrebenko, S.V., Rasel, E., Rathke, A., Reynaud, S., Rievers, B., Samain, E., Sumner, T.J., Theil, S., Touboul, P., Turyshev, S., Vrancken, P., Wolf, P., Yu, N.: Odyssey: a solar system mission. Exp. Astron. 23, 529–547 (2009). doi:10.1007/s10686-008-9084-y, arXiv:0711.2007 [gr-qc]

    ADS  Article  Google Scholar 

  30. 30.

    Connerney , J.E.P., Acuna, M.H., Ness, N.F.: The magnetic field of Neptune. J. Geophys. Res. 96, 19023 (1991)

    ADS  Google Scholar 

  31. 31.

    Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753–1935 (2006). doi:10.1142/S021827180600942X, arXiv:hep-th/0603057

    MathSciNet  ADS  MATH  Article  Google Scholar 

  32. 32.

    Croft, S.K., Kargel, J.S., Kirk, R.L., Moore, J.M., Schenk, P.M., Strom, R.G.: The geology of Triton. In: Cruikshank, D.P., Matthews, M.S., Schumann, A.M. (eds.) Neptune and Triton, pp. 879–947 (1995)

  33. 33.

    Damour, T., Piazza, F., Veneziano, G.: Runaway dilaton and equivalence principle violations. Phys. Rev. Lett. 89(8), 081601 (2002). doi:10.1103/PhysRevLett.89.081601, arXiv:gr-qc/0204094

    ADS  Article  Google Scholar 

  34. 34.

    Defise, J.M., Berghmans, D., Hochedez, J.F.E., Lecat, J.H.M., Mazy, E., Rochus, P.L., Thibert, T., Nicolosi, P., Pelizzo, M.G., Schuehle, U.H., Van der Linden, R.A.M., Zhukov, A.N.: SWAP: Sun watcher using APS detector on-board PROBA-2, a new EUV off-axis telescope on a technology demonstration platform. In: Fineschi, S., Gummin, M.A. (eds.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5171, pp. 143–154 (2004). doi:10.1117/12.516510

  35. 35.

    Del Genio, A.D., Barbara, J.M., Ferrier, J., Ingersoll, A.P., West, R.A., Vasavada, A.R., Spitale, J., Porco, C.C.: Saturn eddy momentum fluxes and convection: first estimates from Cassini images. Icarus 189, 479–492 (2007). doi:10.1016/j.icarus.2007.02.013

    ADS  Article  Google Scholar 

  36. 36.

    Dermott, S.F.: Shapes and gravitational moments of satellites and asteroids. Icarus 37, 575–586 (1979). doi:10.1016/0019-1035(79)90015-0

    ADS  Article  Google Scholar 

  37. 37.

    Dittus, H., Turyshev, S., Lämmerzahl, C., Theil, S., Förstner, R., Johann, U., Ertmer, W., Rasel, E., Dachwald, B., Seboldt, W., Hehl, F., Kiefer, C., Blome, H.J., Kunz, J., Giulini, D., Bingham, R., Kent, B., Sumner, T., Bertolami, O., Páramos, J., Christophe, B., Foulon, B., Touboul, P., Bouyer, P., Reynaud, S., Brillet, A., Bondu, F., Samain, E., de Matos, C., Erd, C., Grenouilleau, J., Izzo, D., Rathke, A., Anderson, J., Asmar, S., Lau, E., Nieto, M., Mashoon, B.: A Mission to Explore the Pioneer Anomaly. ESA Special Publications 588, 3–10 (2005). arXiv:gr-qc/0506139

    ADS  Google Scholar 

  38. 38.

    Djerroud, K., Acef, O., Clairon, A., Lemonde, P., Man, C.N., Samain, E., Wolf, P.: Coherent optical link through the turbulent atmosphere. Opt. Lett. 35, 1479–1481 (2010) doi:10.1364/OL.35.001479, arXiv:0911.4506 [physics.optics]

    ADS  Article  Google Scholar 

  39. 39.

    Doressoundiram, A., Boehnhardt, H., Tegler, S.C., Trujillo, C.: Color properties and trends of the transneptunian objects. In: Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., Morbidelli, A., Dotson, R. (eds.) The Solar System Beyond Neptune, pp. 91–104 (2008)

  40. 40.

    Earman, J., Janssen, M.: Einstein’s explanation of the motion of Mercury’s perihelion. In: Earman, J., Janssen, M., Norton, J.D. (eds.) The Attraction of Gravitation: New Studies in the History of General Relativity, p. 129 (1993)

  41. 41.

    Esnault, F.X., Rossetto, N., Holleville, D., Delporte, J., Dimarcq, N.: HORACE: a compact cold atom clock for Galileo. Adv. Space Res. 47, 854–858 (2011). doi:10.1016/j.asr.2010.12.012

    ADS  Article  Google Scholar 

  42. 42.

    Fienga, A., Laskar, J., Kuchynka, P., Le Poncin-Lafitte, C., Manche, H., Gastineau, M.: Gravity tests with INPOP planetary ephemerides. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) IAU Symposium, vol. 261, pp. 159–169 (2010). doi:10.1017/S1743921309990330, arXiv:0906.3962

  43. 43.

    Fortney, J.J., Ikoma, M., Nettelmann, N., Guillot, T., Marley, M.S.: Self-consistent model atmospheres and the cooling of the Solar System’s giant planets. Astrophys. J. 729(32), 1–14 (2011). doi:10.1088/0004-637X/729/1/32, arXiv:1101.0606[astro-ph.EP]

    Google Scholar 

  44. 44.

    Foryta, D.W., Sicardy, B.: The dynamics of the Neptunian ADAMS Ring’s arcs. Icarus 123, 129–167 (1996). doi:10.1006/icar.1996.0146

    ADS  Article  Google Scholar 

  45. 45.

    Francisco, F., Bertolami, O., Gil, P.J.S., Páramos, J.: Modelling the reflective thermal contribution to the acceleration of the pioneer spacecraft. Phys. Lett. B. 711(5), 337–346 (2012).. doi:10.1016/j.physletb.2012.04.034

    Google Scholar 

  46. 46.

    Fridelance, P., Samain, E., Veillet, C.: T2L2—Time Transfer by Laser Link: a new optical time transfer generation. Exp. Astron. 7, 191–207 (1997). doi:10.1023/A:1007982512087

    ADS  Article  Google Scholar 

  47. 47.

    Frieman, J.A., Turner, M.S., Huterer, D.: Dark energy and the accelerating universe. Annu. Rev. Astron. Astrophys. 46, 385–432 (2008). doi:10.1146/annurev.astro.46.060407.145243, arXiv:0803.0982

    ADS  Article  Google Scholar 

  48. 48.

    Georgescu, E., Auster, H.U., Takada, T., Gloag, J., Eichelberger, H., Fornaçon, K.-H., Brown, P., Carr, C.M., Zhang, T.L.: Modified gradiometer technique applied to Double Star (TC-1). Adv. Space Res. 411579–1584 (2008). doi:10.1016/j.asr.2008.01.014

    ADS  Article  Google Scholar 

  49. 49.

    Glassmeier, K., Richter, I., Diedrich, A., Musmann, G., Auster, U., Motschmann, U., Balogh, A., Carr, C., Cupido, E., Coates, A., Rother, M., Schwingenschuh, K., Szegö, K., Tsurutani, B.: RPC-MAG the fluxgate magnetometer in the ROSETTA plasma consortium. Space Sci. Rev. 128, 649–670 (2007). doi:10.1007/s11214-006-9114-x

    ADS  Article  Google Scholar 

  50. 50.

    Glassmeier, K.H., Auster, H.U., Heyner, D., Okrafka, K., Carr, C., Berghofer, G., Anderson, B.J., Balogh, A., Baumjohann, W., Cargill, P., Christensen, U., Delva, M., Dougherty, M., Fornaçon, K.H., Horbury, T.S., Lucek, E.A., Magnes, W., Mandea, M., Matsuoka, A., Matsushima, M., Motschmann, U., Nakamura, R., Narita, Y., O’Brien, H., Richter, I., Schwingenschuh, K., Shibuya, H., Slavin, J.A., Sotin, C., Stoll, B., Tsunakawa, H., Vennerstrom, S., Vogt, J., Zhang, T.: The fluxgate magnetometer of the BepiColombo Mercury Planetary Orbiter. Planet. Space Sci. 58, 287–299 (2010). doi:10.1016/j.pss.2008.06.018

    ADS  Article  Google Scholar 

  51. 51.

    Gloag, J.M., Lucek, E.A., Alconcel, L.N., Balogh, A., Brown, P., Carr, C.M., Dunford, C.N., Oddy, T., Soucek, J.: FGM data products in the CAA. In: Laakso, H., Taylor, M., Escoubet, C.P. (eds.) The Cluster Active Archive, Studying the Earth’s Space Plasma Environment, pp. 109–128 (2010). doi:10.1007/978-90-481-3499-1_7

  52. 52.

    Goldreich, P., Tremaine, S., Borderies, N.: Towards a theory for Neptune’s arc rings. Astron. J. 92, 490–494 (1986). doi:10.1086/114178

    ADS  Article  Google Scholar 

  53. 53.

    Gregory, M., Heine, F., Kämpfner, H., Meyer, R., Fields, R., Lunde, C.: TESAT laser communication terminal performance results in 5.6 GBit coherent inter-satellite and satelliteto-ground links. In: Proc Int Conf on Space Optics, session 8a (2010)

  54. 54.

    Grün, E., Fechtig, H., Hanner, M.S., Kissel, J., Lindblad, B.A., Linkert, D., Maas, D., Morfill, G.E., Zook, H.A.: The Galileo Dust Detector. Space Sci. Rev. 60, 317–340 (1992). doi:10.1007/BF00216860

    ADS  Article  Google Scholar 

  55. 55.

    Grün, E., Fechtig, H., Kissel, J., Linkert, D., Maas, D., McDonnell, J.A.M., Morfill, G.E., Schwehm, G., Zook, H.A., Giese, R.H.: The ULYSSES dust experiment. Astron. Astrophys. Suppl. Ser. 92, 411–423 (1992)

    ADS  Google Scholar 

  56. 56.

    Grundy, W.M., Young, L.A., Stansberry, J.A., Buie, M.W., Olkin, C.B., Young, E.F.: Near-infrared spectral monitoring of Triton with IRTF/SpeX II: spatial distribution and evolution of ices. Icarus 205, 594–604 (2010). doi:10.1016/j.icarus.2009.08.005, arXiv:0908.2623[astro-ph.EP]

    ADS  Article  Google Scholar 

  57. 57.

    Guo, Y., Farquhar, R.W.: New horizons mission design. Space Sci. Rev. 140, 49–74 (2008). doi:10.1007/s11214-007-9242-y

    ADS  Article  Google Scholar 

  58. 58.

    Gurnett, D.A., Kurth, W.S., Granroth, L.J., Allendorf, S.C., Poynter, R.L.: Micron-sized particles detected near Neptune by the Voyager 2 plasma wave instrument. J. Geophys. Res. 96, 19177 (1991)

    ADS  Article  Google Scholar 

  59. 59.

    Gurnett, D.A., Kurth, W.S., Kirchner, D.L., Hospodarsky, G.B., Averkamp, T.F., Zarka, P., Lecacheux, A., Manning, R., Roux, A., Canu, P., Cornilleau-Wehrlin, N., Galopeau, P., Meyer, A., Boström, R., Gustafsson, G., Wahlund, J.E., Åhlen, L., Rucker, H.O., Ladreiter, H.P., Macher, W., Woolliscroft, L.J.C., Alleyne, H., Kaiser, M.L., Desch, M.D., Farrell, W.M., Harvey, C.C., Louarn, P., Kellogg, P.J., Goetz, K., Pedersen, A: The Cassini Radio and plasma wave investigation. Space Sci. Rev. 114, 395–463 (2004). doi:10.1007/s11214-004-1434-0

    ADS  Article  Google Scholar 

  60. 60.

    Hansen, C., Argo Team: Neptune science with Argo—a voyage through the Outer Solar System. Decadal Survey white paper (2010)

  61. 61.

    Hansen, C., Argo Team: Triton science with Argo—a voyage through the Outer Solar System. Decadal Survey white paper (2010)

  62. 62.

    Harrington, J., Hansen, B.M., Luszcz, S.H., Seager, S., Deming, D., Menou, K., Cho, J., Richardson, L.J.: The phase-dependent infrared brightness of the extrasolar planet Υ Andromedae b. Science 314, 623–626 (2006). doi:10.1126/science.1133904, arXiv:astro-ph/0610491

    ADS  Article  Google Scholar 

  63. 63.

    Helled, R., Anderson, J.D., Schubert, G.: Uranus and Neptune: shape and rotation. Icarus 210, 446–454 (2010). doi:10.1016/j.icarus.2010.06.037, arXiv:1006.3840[astro-ph.EP]

    ADS  Article  Google Scholar 

  64. 64.

    Hiesinger, H., Helbert, J., MERTIS Co-I Team: The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission. Planet. Space Sci. 58, 144–165 (2010). doi:10.1016/j.pss.2008.09.019

    ADS  Article  Google Scholar 

  65. 65.

    Hopkinson, G.R., Mohammadzadeh, A.: Low temperature alpha particle irradiation of a STAR1000 CMOS APS. IEEE Trans. Nucl. Sci. 55, 2229–2234 (2008). doi:10.1109/TNS.2008.920257

    ADS  Article  Google Scholar 

  66. 66.

    Hubbard, W.B.: NOTE: gravitational signature of Jupiter’s deep zonal flows. Icarus 137, 357–359 (1999). doi:10.1006/icar.1998.6064

    ADS  Article  Google Scholar 

  67. 67.

    Hubbard, W.B., Anderson, J.D.: Possible flyby measurements of Galilean satellite interior structure. Icarus 33, 336–341 (1978). doi:10.1016/0019-1035(78)90153-7

    ADS  Article  Google Scholar 

  68. 68.

    Hubbard, W.B., Nellis, W.J., Mitchell, A.C., Holmes, N.C., McCandless, P.C., Limaye, S.S.: Interior structure of Neptune—comparison with Uranus. Science 253, 648–651 (1991). doi:10.1126/science.253.5020.648

    ADS  Article  Google Scholar 

  69. 69.

    Hussmann, H., Sohl, F., Spohn, T.: Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects. Icarus 185, 258–273 (2006). doi:10.1016/j.icarus.2006.06.005

    ADS  Article  Google Scholar 

  70. 70.

    Iess, L., Asmar, S., Tortora, P.: MORE: an advanced tracking experiment for the exploration of Mercury with the mission BepiColombo. Acta Astron. 65, 666–675 (2009)

    Article  Google Scholar 

  71. 71.

    Jacobson, R.: The orbits of the Neptunian satellites and the orientation of the pole of Neptune. Astron. J. 137, 4322–4329 (2009). doi:10.1088/0004-6256/137/5/4322

    ADS  Article  Google Scholar 

  72. 72.

    Jaekel, M., Reynaud, S.: Post-Einsteinian tests of linearized gravitation. Classical Quant. Grav. 22, 2135–2157 (2005). doi:10.1088/0264-9381/22/11/015, arXiv:gr-qc/0502007

    MathSciNet  ADS  MATH  Article  Google Scholar 

  73. 73.

    Jaekel, M., Reynaud, S.: Post-Einsteinian tests of gravitation. Classical Quant. Grav. 23, 777–798 (2006). doi:10.1088/0264-9381/23/3/015, arXiv:gr-qc/0510068

    MathSciNet  ADS  MATH  Article  Google Scholar 

  74. 74.

    Jaekel, M., Reynaud, S.: Radar ranging and Doppler tracking in post-Einsteinian metric theories of gravity. Classical Quant. Grav. 23, 7561–7579 (2006). doi:10.1088/0264-9381/23/24/025, arXiv:gr-qc/0610155

    MathSciNet  ADS  MATH  Article  Google Scholar 

  75. 75.

    Jewitt, D., Luu, J., Marsden, B.G.: 1992 QB1. IAU circ 5611 (1992)

  76. 76.

    Johann, U., Dittus, H., Lämmerzahl, C.: Exploring the Pioneer anomaly: concept considerations for a Deep-Space Gravity Probe based on laser-controlled free-flying reference masses. In: Dittus, H., Lämmerzahl, C., Turyshev, S.G. (eds.) Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space, Astrophysics and Space Science Library, vol. 349, pp. 577–604 (2008). doi:10.1007/978-3-540-34377-6_26

  77. 77.

    Kavelaars, J., Jones, L., Gladman, B., Parker, J.W., Petit, J.: The orbital and spatial distribution of the Kuiper Belt. In: Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., Morbidelli, A., Dotson, R. (eds.) The Solar System Beyond Neptune, pp. 59–69 (2008)

  78. 78.

    Kepko, E.L., Khurana, K.K., Kivelson, M.G., Elphic, R.C., Russell, C.T.: Accurate determination of magnetic field gradients from four point vector measurements. I. Use of natural constraints on vector data obtained from a single spinning spacecraft. IEEE Trans. Magn. 32, 377–385 (1996). doi:10.1109/20.486522

    ADS  Article  Google Scholar 

  79. 79.

    Kirk, R.L., Soderblom, L.A., Brown, R.H.: Subsurface energy storage and transport for solar-powered geysers on Triton. Science 250, 424–429 (1990). doi:10.1126/science.250.4979.424

    ADS  Article  Google Scholar 

  80. 80.

    Kissel, J., Glasmachers, A., Grün, E., Henkel, H., Höfner, H., Haerendel, G., von Hoerner, H., Hornung, K., Jessberger, E.K., Krueger, F.R., Möhlmann, D., Greenberg, J.M., Langevin, Y., Silén, J., Brownlee, D., Clark, B.C., Hanner, M.S., Hoerz, F., Sandford, S., Sekanina, Z., Tsou, P., Utterback, N.G., Zolensky, M.E., Heiss, C.: Cometary and interstellar dust analyzer for comet Wild 2. J. Geophys. Res. 108, 8114 (2003). doi:10.1029/2003JE002091

    Article  Google Scholar 

  81. 81.

    Kivelson, M.G., Khurana, K.K., Volwerk, M.: The permanent and inductive magnetic moments of Ganymede. Icarus 157, 507–522 (2002). doi:10.1006/icar.2002.6834

    ADS  Article  Google Scholar 

  82. 82.

    Kliore, A.J., Anderson, J.D., Armstrong, J.W., Asmar, S.W., Hamilton, C.L., Rappaport, N.J., Wahlquist, H.D., Ambrosini, R., Flasar, F.M., French, R.G., Iess, L., Marouf, E.A., Nagy, A.F.: Cassini radio science. Space Sci. Rev. 115, 1–70 (2004). doi:10.1007/s11214-004-1436-y

    ADS  Article  Google Scholar 

  83. 83.

    Lämmerzahl, C., Preuss, O., Dittus, H.: Is the physics within the Solar System really understood? In: Dittus, H., Lämmerzahl, C., Turyshev, S.G. (eds.) Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space, Astrophysics and Space Science Library, vol. 349, pp. 75–101 (2008). doi:10.1007/978-3-540-34377-6_3

  84. 84.

    Leinweber, H.K., Russell, C.T., Torkar, K., Zhang, T.L., Angelopoulos, V.: An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field. Meas. Sci. Technol. 19(5), 055104 (2008). doi:10.1088/0957-0233/19/5/055104

    ADS  Article  Google Scholar 

  85. 85.

    Lenoir, B., Christophe, B., Lévy, A., Foulon, B., Reynaud, S., Courty, J.M., Lamine, B., Dittus, H., van Zoest, T., Lämmerzahl, C., Selig, H., Léon-Hirtz, S., Biancale, R., Métris, G., Sohl, F., Wolf, P.: Odyssey 2: a mission toward Neptune and Triton to test general relativity. In: 61st international astronautical congress, Prague, Czech Republic (2010). IAC-10.A3.6.5, arXiv:1107.2316

  86. 86.

    Lenoir, B., Christophe, B., Reynaud, S.: Measuring the absolute non-gravitational acceleration of a spacecraft: goals, devices, methods, performances. In: Journées 2011 de la Société Française d’Astronomie & d’Astrophysique, Paris, France (2011). http://lesia.obspm.fr/semaine-sf2a/2011/proceedings/2011/2011sf2a.conf.0663L.pdf, arXiv: 1110.0342

  87. 87.

    Lenoir, B., Christophe, B., Reynaud, S.: Unbiased acceleration measurements with an electrostatic accelerometer. Adv. Space Res. (2012). arXiv:1105.4979

  88. 88.

    Lenoir, B., Lévy, A., Foulon, B., Lamine, B., Christophe, B., Reynaud, S.: Electrostatic accelerometer with bias rejection for gravitation and Solar System physics. Adv. Space Res. 48(7), 1248–1257 (2011). doi:10.1016/j.asr.2011.06.005, arXiv:1011.6263

    ADS  Article  Google Scholar 

  89. 89.

    Levy, A., Christophe, B., Bério, P., Métris, G., Courty, J., Reynaud, S.: Pioneer 10 Doppler data analysis: disentangling periodic and secular anomalies. Adv. Space Res. 43, 1538–1544 (2009). doi:10.1016/j.asr.2009.01.003, arXiv:0809.2682 [gr-qc]

    ADS  Article  Google Scholar 

  90. 90.

    Limaye, S.S., Sromovsky, L.A.: Winds of Neptune—voyager observations of cloud motions. J. Geophys. Res. 96, 18941–18960 (1991)

    ADS  Google Scholar 

  91. 91.

    Linfield, R.P., Colavita, M.M., Lane, B.F.: Atmospheric turbulence measurements with the Palomar testbed interferometer. Astrophys. J. 554, 505–513 (2001). doi:10.1086/321372, arXiv:astro-ph/0102052

    ADS  Article  Google Scholar 

  92. 92.

    Lorenz, R.D., Stiles, B.W., Kirk, R.L., Allison, M.D., del Marmo, P.P., Iess, L., Lunine, J.I., Ostro, S.J., Hensley, S.: Titan’s rotation reveals an internal ocean and changing zonal winds. Science 319, 1649–1651 (2008)

    ADS  Article  Google Scholar 

  93. 93.

    Luszcz-Cook, S.H., de Pater, I., Ádámkovics, M., Hammel, H.B.: Seeing double at Neptune’s south pole. Icarus 208, 938–944 (2010). doi:10.1016/j.icarus.2010.03.007, arXiv:1003.3240[astro-ph.EP]

    ADS  Article  Google Scholar 

  94. 94.

    Malhotra, R.: The origin of Pluto’s peculiar orbit. Nature 365, 819–821 (1993). doi:10.1038/365819a0

    ADS  Article  Google Scholar 

  95. 95.

    Markwardt, C.B.: Independent Confirmation of the Pioneer 10 anomalous acceleration. ArXiv General Relativity and Quantum Cosmology e-prints arXiv:gr-qc/0208046 (2002)

  96. 96.

    Marley, M., et al.: JPL Rapid Mission Architecture Neptune-Triton-KBO Study Final Report. Planetary Science Decadal Survey (2010)

  97. 97.

    Mauk, B.H., Krimigis, S.M., Cheng, A.F., Selesnick, R.S.: Energetic particles and hot plasmas of Neptune. In: Cruikshank, D.P., Matthews, M.S., Schumann, A.M. (eds.) Neptune and Triton, pp. 169–232 (1995)

  98. 98.

    Merlin, F., Alvarez-Candal, A., Delsanti, A., Fornasier, S., Barucci, M.A., DeMeo, F.E., de Bergh, C., Doressoundiram, A., Quirico, E., Schmitt, B.: Stratification of Methane Ice on Eris’ Surface. Astron. J. 137, 315–328 (2009). doi:10.1088/0004-6256/137/1/315

    ADS  Article  Google Scholar 

  99. 99.

    Moffat, J.W.: Gravitational theory, galaxy rotation curves and cosmology without dark matter. J. Cosmol. Astropart. P 5(3), 1–28 (2005). doi:10.1088/1475-7516/2005/05/003, arXiv:astro-ph/0412195

    MathSciNet  ADS  Google Scholar 

  100. 100.

    Moffat, J.W.: Scalar tensor vector gravity theory. J. Cosmol. Astropart. P 3(4), 1–18 (2006). doi:10.1088/1475-7516/2006/03/004, arXiv:gr-qc/0506021

    MathSciNet  Article  Google Scholar 

  101. 101.

    Murray, C.D., Beurle, K., Cooper, N.J., Evans, M.W., Williams, G.A., Charnoz, S.: The determination of the structure of Saturn’s F ring by nearby moonlets. Nature 453, 739–744 (2008). doi:10.1038/nature06999

    ADS  Article  Google Scholar 

  102. 102.

    Ness, N.F.: Intrinsic magnetic fields of the planets: Mercury to Neptune. Phil. Trans. R. Soc. Lond. A 349(1690), 249–260 (1994). doi:10.1098/rsta.1994.0129

    ADS  Article  Google Scholar 

  103. 103.

    Ness, N.F., Acuna, M.H., Burlaga, L.F., Connerney, J.E.P., Lepping, R.P.: Magnetic fields at Neptune. Science 246, 1473–1478 (1989)

    ADS  Article  Google Scholar 

  104. 104.

    Ness, N.F., Behannon, K.W., Lepping, R.P., Schatten, K.H.: Use of two magnetometers for magnetic field measurements on a spacecraft. J. Geophys. Res. 76, 3564–3573 (1971). doi:10.1029/JA076i016p03564

    ADS  Article  Google Scholar 

  105. 105.

    Nicholson, P.D., Mosqueira, I., Matthews, K.: Stellar occultation observations of Neptune’s rings: 1984–1988. Icarus 113, 295–330 (1995). doi:10.1006/icar.1995.1025

    ADS  Article  Google Scholar 

  106. 106.

    Nojiri, S., Odintsov, S.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 4(1), 115–145 (2007). doi:10.1142/S0219887807001928, arXiv:hep-th/0601213

    MathSciNet  MATH  Article  Google Scholar 

  107. 107.

    Noll, K.S., Grundy, W.M., Chiang, E.I., Margot, J.L., Kern, S.D.: Binaries in the Kuiper Belt. In: Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., Morbidelli, A., Dotson, R. (eds.) The Solar System Beyond Neptune, pp. 345–363 (2008)

  108. 108.

    Olsen, Ø.: The constancy of the Pioneer anomalous acceleration. Astron. Astrophys. 463, 393–397 (2007). doi:10.1051/0004-6361:20065906

    ADS  Article  Google Scholar 

  109. 109.

    Podolak, M., Weizman, A., Marley, M.: Comparative models of Uranus and Neptune. Planet. Space Sci. 43, 1517–1522 (1995). doi:10.1016/0032-0633(95)00061-5

    ADS  Article  Google Scholar 

  110. 110.

    Porco, C.C.: An explanation for Neptune’s ring arcs. Science 253, 995–1001 (1991). doi:10.1126/science.253.5023.995

    ADS  Article  Google Scholar 

  111. 111.

    Prestage, J.D., Chung, S.S., Lim, L., Matevosian, A.: Compact microwave mercury ion clock for deep-space applications. In: IEEE International Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum, pp. 1113–1115 (2007). doi:10.1109/FREQ.2007.4319251

  112. 112.

    Prockter, L.M., Rivkin, A.S., McNutt, R.L. Jr., Gold, R.E., Ostdiek, P.H., Leary, J.C., Fiehler, D.I., Oleson, S.R., Witzberger, K.E.: Enabling decadal survey science goals for primitive bodies using radioisotope electric propulsion. In: Mackwell, S., Stansbery, E. (eds.) 37th Annual Lunar and Planetary Science Conference, Lunar and Planetary Inst. Technical Report, vol. 37(1922) (2006)

  113. 113.

    Reuter, D.C., Stern, S.A., Scherrer, J., Jennings, D.E., Baer, J.W., Hanley, J., Hardaway, L., Lunsford, A., McMuldroch, S., Moore, J., Olkin, C., Parizek, R., Reitsma, H., Sabatke, D., Spencer, J., Stone, J., Throop, H., van Cleve, J., Weigle, G.E., Young, L.A.: Ralph: a visible/infrared imager for the new horizons Pluto/Kuiper Belt mission. Space Sci. Rev. 140, 129–154 (2008). doi:10.1007/s11214-008-9375-7, arXiv:0709.4281 [astro-ph]

    ADS  Article  Google Scholar 

  114. 114.

    Reynaud, S., Jaekel, M.T.: Testing the Newton law at long distances. Int. J. Mod. Phys. A 20, 2294 (2005). doi:10.1142/S0217751X05024523

    ADS  MATH  Article  Google Scholar 

  115. 115.

    Richardson, J.D., Belcher, J.W., Zhang, M., McNutt, R.L. Jr.: Low-energy ions near Neptune. J. Geophys. Res. Suppl. 96, 18993–19011 (1991)

    ADS  Google Scholar 

  116. 116.

    Rievers, B., Lämmerzahl, C.: High precision thermal modeling of complex systems with application to the flyby and Pioneer anomaly. Ann. Phys. 523, 439–449 (2011). doi:10.1002/andp.201100081, arXiv:1104.3985

    Article  Google Scholar 

  117. 117.

    Robert, C., Fleury, B., Michau, V., Conan, J.M., Veyssiere, L., Magli, S., Vial, L.: Shack–Hartmann wavefront sensor using IR extended source. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6747 (2007). doi:10.1117/12.738296

  118. 118.

    Salyk, C., Ingersoll, A.P., Lorre, J., Vasavada, A., Del Genio, A.D.: Interaction between eddies and mean flow in Jupiter’s atmosphere: analysis of Cassini imaging data. Icarus 185, 430–442 (2006). doi:10.1016/j.icarus.2006.08.007

    ADS  Article  Google Scholar 

  119. 119.

    Sandel, B.R., Herbert, F., Dessler, A.J., Hill, T.W.: Aurora and airglow on the night side of Neptune. Geophys. Res. Lett. 17, 1693–1696 (1990). doi:10.1029/GL017i010p01693

    ADS  Article  Google Scholar 

  120. 120.

    Saur, J., Neubauer, F.M., Glassmeier, K.: Induced magnetic fields in Solar System bodies. Space Sci. Rev. 152, 391–421 (2010). doi:10.1007/s11214-009-9581-y

    ADS  Article  Google Scholar 

  121. 121.

    Sayanagi, K.M., Showman, A.P., Dowling, T.E.: The emergence of multiple robust zonal jets from freely evolving, three-dimensional stratified geostrophic turbulence with applications to Jupiter. J. Atmos. Sci. 65, 3947–1962 (2008). doi:10.1175/2008JAS2558.1

    Article  Google Scholar 

  122. 122.

    Schubert, G., Anderson, J.D., Spohn, T., McKinnon, W.B.: Interior composition, structure and dynamics of the Galilean satellites. In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (eds.) Jupiter. The Planet, Satellites and Magnetosphere, pp. 281–306 (2004)

  123. 123.

    Schubert, G., Anderson, J.D., Travis, B.J., Palguta, J.: Enceladus: present internal structure and differentiation by early and long-term radiogenic heating. Icarus 188, 345–355 (2007). doi:10.1016/j.icarus.2006.12.012

    ADS  Article  Google Scholar 

  124. 124.

    Selig, H., Christophe, B., Lenoir, B., Lämmerzahl, C.: Technology development for fundamental physics space missions aiming at high precision gravitational field measurements. In: 62nd International Astronautical Congress, Cape Town, South Africa, IAC-11.A2.3.12 (2011)

  125. 125.

    Smith, B.A., Soderblom, L.A., Banfield, D., Barnet, C., Beebe, R.F., Bazilevskii, A.T., Bollinger, K., Boyce, J.M., Briggs, G.A., Brahic, A.: Voyager 2 at Neptune—imaging science results. Science 246, 1422–1449 (1989). doi:10.1126/science.246.4936.1422

    ADS  Article  Google Scholar 

  126. 126.

    Soderblom, L.A., Becker, T.L., Kieffer, S.W., Brown, R.H., Hansen, C.J., Johnson, T.V.: Triton’s geyser-like plumes—discovery and basic characterization. Science 250, 410–415 (1990). doi:10.1126/science.250.4979.410

    ADS  Article  Google Scholar 

  127. 127.

    Spilker, L., Argo Team: Neptune Ring Science with Argo—a voyage through the Outer Solar System. Decadal Survey white paper (2010)

  128. 128.

    Srama, R., Ahrens, T.J., Altobelli, N., Auer, S., Bradley, J.G., Burton, M., Dikarev, V.V., Economou, T., Fechtig, H., Görlich, M., Grande, M., Graps, A., Grün, E., Havnes, O., Helfert, S., Horanyi, M., Igenbergs, E., Jessberger, E.K., Johnson, T.V., Kempf, S., Krivov, A.V., Krüger, H., Mocker-Ahlreep, A., Moragas-Klostermeyer, G., Lamy, P., Landgraf, M., Linkert, D., Linkert, G., Lura, F., McDonnell, J.A.M., Möhlmann, D., Morfill, G.E., Müller, M., Roy, M., Schäfer, G., Schlotzhauer, G., Schwehm, G.H., Spahn, F., Stübig, M., Svestka, J., Tschernjawski, V., Tuzzolino, A.J., Wäsch, R., Zook, H.A.: The Cassini Cosmic Dust Analyzer. Space Sci. Rev. 114, 465–518 (2004). doi:10.1007/s11214-004-1435-z

    ADS  Article  Google Scholar 

  129. 129.

    Stanley, S., Bloxham, J.: Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428, 151–153 (2004). doi:10.1038/nature02376

    ADS  Article  Google Scholar 

  130. 130.

    Stansberry, J., Argo Team: KBO Science with Argo—a voyage through the Outer Solar System. Decadal Survey white paper (2010)

  131. 131.

    Stansberry, J., Grundy, W., Brown, M.: Physical properties of Kuiper Belt objects and centaurs: Spitzer Space Telescope constraints. In: Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., Morbidelli, A., Dotson, R. (eds.) The Solar System Beyond Neptune, pp. 161–179 (2008)

  132. 132.

    Stevenson, D.: Planetary oceans. Sky Telescope 104, 38–44 (2002)

    ADS  Google Scholar 

  133. 133.

    Thomas, P.: The shape of Triton from limb profiles. Icarus 148, 587–588 (2000). doi:10.1006/icar.2000.6511

    ADS  Article  Google Scholar 

  134. 134.

    Touboul, P., Willemenot, E., Foulon, B., Josselin, V.: Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution. In: Joint Meeting of the International Gravity Commission and the International Geoid Commission No2, B. Geofis. Teor. Appl., vol. 40, pp. 321–327 (1999)

  135. 135.

    Turyshev, S.G., Toth, V.T.: The pioneer anomaly in the light of new data. Space Sci. Rev. 148, 149–167 (2009). doi:10.1007/s11214-009-9543-4, arXiv:0906.0399 [gr-qc]

    ADS  Article  Google Scholar 

  136. 136.

    Turyshev, S.G., Toth, V.T.: The Pioneer Anomaly. Living Rev. Relativ. 13(4), 1–175 (2010). URL http://www.livingreviews.org/lrr-2010-4, arXiv:1001.3686 [gr-qc]

    ADS  Google Scholar 

  137. 137.

    Turyshev, S.G., Toth, V.T., Kinsella, G., Lee, S.C., Lok, S.M., Ellis, J.: Support for the thermal origin of the Pioneer anomaly. ArXiv e-prints 1204.2507 (2012)

  138. 138.

    Tyler, G.L., Sweetnam, D.N., Anderson, J.D., Borutzki, S.E., Campbell, J.K., Kursinski, E.R., Levy, G.S., Lindal, G.F., Lyons, J.R., Wood, G.E.: Voyager radio science observations of Neptune and Triton. Science 246, 1466–1473 (1989). doi:10.1126/science.246.4936.1466

    ADS  Article  Google Scholar 

  139. 139.

    Tyler, G.L., Linscott, I.R., Bird, M.K., Hinson, D.P., Strobel, D.F., Pätzold, M., Summers, M.E., Sivaramakrishnan, K.: The New Horizons Radio Science Experiment (REX). Space Sci. Rev. 140, 217–259 (2008). doi:10.1007/s11214-007-9302-3

    ADS  Article  Google Scholar 

  140. 140.

    Weaver, H.A., Gibson, W.C., Tapley, M.B., Young, L.A., Stern, S.A.: Overview of the New Horizons Science Payload. Space Sci. Rev. 140, 75–91 (2008). doi:10.1007/s11214-008-9376-6, arXiv:0709.4261

    ADS  Article  Google Scholar 

  141. 141.

    Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 9(3), 1–100 (2006). URL http://www.livingreviews.org/lrr-2006-3

    Google Scholar 

  142. 142.

    Wolf, P., Bordé, C.J., Clairon, A., Duchayne, L., Landragin, A., Lemonde, P., Santarelli, G., Ertmer, W., Rasel, E., Cataliotti, F.S., Inguscio, M., Tino, G.M., Gill, P., Klein, H., Reynaud, S., Salomon, C., Peik, E., Bertolami, O., Gil, P., Páramos, J., Jentsch, C., Johann, U., Rathke, A., Bouyer, P., Cacciapuoti, L., Izzo, D., de Natale, P., Christophe, B., Touboul, P., Turyshev, S.G., Anderson, J., Tobar, M.E., Schmidt-Kaler, F., Vigué, J., Madej, A.A., Marmet, L., Angonin, M., Delva, P., Tourrenc, P., Metris, G., Müller, H., Walsworth, R., Lu, Z.H., Wang, L.J., Bongs, K., Toncelli, A., Tonelli, M., Dittus, H., Lämmerzahl, C., Galzerano, G., Laporta, P., Laskar, J., Fienga, A., Roques, F., Sengstock, K.: Quantum physics exploring gravity in the outer solar system: the SAGAS project. Exp. Astron. 23, 651–687 (2009). doi:10.1007/s10686-008-9118-5, arXiv:0711.0304 [gr-qc]

    ADS  Article  Google Scholar 

  143. 143.

    Zarka, P., Pedersen, B.M., Lecacheux, A., Kaiser, M.L., Desch, M.D., Farrell, W.M., Kurth, W.S.: Radio emissions from Neptune. In: Cruikshank, D.P., Matthews, M.S., Schumann, A.M. (eds.) Neptune and Triton, pp. 341–387 (1995)

  144. 144.

    Zharkov, V., et al.: Interior structure of the planets. In: Physics of Planetary Interiors (1978)

  145. 145.

    Zharkov, V.N., Gudkova, T.V. Models, figures and gravitational moments of Jupiter’s satellite Io: effects of the second order approximation. Planet. Space Sci. 58, 1381–1390 (2010). doi:10.1016/j.pss.2010.06.004

    ADS  Article  Google Scholar 

  146. 146.

    Zimmer, C., Khurana, K.K., Kivelson, M.G.: Subsurface oceans on Europa and Callisto: constraints from Galileo Magnetometer Observations. Icarus 147, 329–347 (2000). doi:10.1006/icar.2000.6456

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thanks the reviewers for their comments and corrections.

We gratefully acknowledge the support of the Argo Science team for supplying their Decadal Survey White Papers [60, 61, 127, 130].

This proposal was supported by CNES (France) through a phase 0 study managed by E. Hinglais.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Christophe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Christophe, B., Spilker, L.J., Anderson, J.D. et al. OSS (Outer Solar System): a fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt. Exp Astron 34, 203–242 (2012). https://doi.org/10.1007/s10686-012-9309-y

Download citation

Keywords

  • Fundamental physics
  • Deep space gravity
  • Neptune
  • Triton
  • Kuiper Belt object