Skip to main content
Log in

Body size traits in the flightless bush-cricket are plastic rather than locally adapted along an elevational gradient

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Elevational gradients are closely associated with strong abiotic variation at small spatial scales and provide a powerful tool to assess species’ adjustments to climatic and other environmental factors. To understand the role of genetic underpinning and environmentally-induced plasticity on body size, we compared variation in a range of morphological traits in wild-caught and lab-reared (F1 generation) dark bush-crickets (Pholidoptera griseoaptera) from 10 populations sampled along an elevational gradient of approximately 1100 m. We used linear mixed models (LMM) and linear models to test the effects of sex, rearing environment (wild-caught vs. lab-reared), elevation and population identity, and the interactions between these factors on trait variation. In LMM, population identity was used as a random effect to test for trait inter-population repeatability. In the lab, we found genetically-based differences between populations; however, this variation wasn’t elevation-dependent, suggesting that it’s not locally adapted to elevation and associated environmental variables. In contrast, we observed a weak negative association between elevation and locomotor traits (hind femur length and hind tibia length), pronotum width and females’ ovipositor length in wild-caught bush-crickets, which could be attributable to environmentally-induced phenotypic plasticity. Plasticity could also be responsible for lower differences between populations and lower repeatability within populations in the wild than in the lab environment, and larger body-size traits in wild-caught bush-crickets. The lower repeatability in wild populations can be explained by the greater temporal and spatial environmental heterogeneity in the wild compared to lab. Sex-specific morphological differences were more pronounced in the wild than in the laboratory. Since we can assume limited gene flow between populations of the species, we can conclude that other fitness-related traits are subject to selection and thus enable the broad elevational distribution of this bush-cricket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability (data transparency)

Data are available by request to the corresponding author.

Code availability

Not applicable.

References

  • Bachmann JC, van Jansen A, Cortazar–Chinarro M, Laurila A, Van Buskirk J (2020) Gene flow limits adaptation along steep environmental gradients. Am Nat 195:E67–E86

    Article  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed–effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Benton T (2012) Grasshoppers and crickets. Collins new naturalist library, Book 120. HarperCollins, London

    Google Scholar 

  • Berner D, Blanckenhorn WU (2006) Grasshopper ontogeny in relation to time constraints: adaptive divergence and stasis. J Anim Ecol 75:130–139

    Article  PubMed  Google Scholar 

  • Berner D, Körner C, Blanckenhorn WU (2004) Grasshopper populations across 2000 m of altitude: is there life history adaptation? Ecography 27:733–740

    Article  Google Scholar 

  • Bidau CJ, Martínez PA (2018) Evolutionary negative allometry of orthopteran hind femur length is a general phenomenon. Zoomorphology 137:291–304

    Article  Google Scholar 

  • Bidau CJ, Taffarel A, Castillo ER (2016) Breaking the rule: multiple patterns of scaling of sexual size dimorphism with body size in orthopteroid insects. Rev Soc Entomol Argent 75:11–36

    Google Scholar 

  • Blanquart F, Kaltz O, Nuismer SL, Gandon S (2013) A practical guide to measuring local adaptation. Ecol Lett 16:1195–1205

    Article  PubMed  Google Scholar 

  • Černecká Ľ, Dorková M, Jarčuška B, Kaňuch P (2021) Elevational variation in voltinism demonstrates climatic adaptation in the dark bush-cricket. Ecol Entomol 46:360–367

    Article  Google Scholar 

  • Chapuis MP, Pélissié B, Piou C, Chardonnet F, Pagès C, Foucart A, Chapuis E, Jourdan-Pineau H (2021) Additive genetic variance for traits least related to fitness increases with environmental stress in the desert locust, Schistocerca gregaria. Ecol Evol 11:13930–13947

    Article  PubMed  PubMed Central  Google Scholar 

  • Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev Camb Philos 85:139–169

    Article  Google Scholar 

  • Detzel P (1998) Die Heuschrecken BadenWürttembergs. Verlag Eugen Ulmer GmbH & Co, Stuttgart

    Google Scholar 

  • Diekötter T, Csencsics D, Rothenbühler C, Billeter R, Edwards PJ (2005) Movement and dispersal patterns in the bush cricket Pholidoptera griseoaptera: the role of developmental stage and sex. Ecol Entomol 30:419–427

    Article  Google Scholar 

  • Diekötter T, Speelmans M, Dusoulier F, Van Wingerden WKRE, Malfait JP, Crist TO, Edwards PJ, Dietz H (2007) Effects of landscape structure on movement patterns of the flightless bush cricket Pholidoptera griseoaptera. Environ Entomol 36:90–98

    Article  PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative Genetics. Longman, New York

    Google Scholar 

  • Forster J, Hirst AG, Atkinson D (2012) Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc Natl Acad Sci USA 109:19310–19314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox J, Weisberg S (2019) An R companion to applied regression, 3rd edn. Sage, Thousand Oaks

    Google Scholar 

  • Gonda A, Herczeg G, Merilä J (2011) Population variation in brain size of nine-spined sticklebacks (Pungitius pungitius)—local adaptation or environmentally induced variation? BMC Evol Biol 11:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrell Jr FE, Dupont C, et al (2021) Hmisc: Harrell Miscellaneous. R package version 4.5-0. https://CRAN.R-project.org/package=Hmisc. Accessed July 2022

  • Harris RM, McQuillan P, Hughes L (2015) The effectiveness of common thermo-regulatory behaviours in a cool temperate grasshopper. J Therm Biol 52:75–83

    Article  PubMed  Google Scholar 

  • Harz K (1969) The orthoptera of Europe I. Dr. W. Junk N. V, The Hague

    Google Scholar 

  • Hirst AG, Horne CR, Atkinson D (2015) Equal temperature-size responses of the sexes are widespread within arthropod species. Proc R Soc B Biol Sci 282(1820):20152475

    Article  Google Scholar 

  • Hochkirch A, Gröning J (2008) Sexual size dimorphism in Orthoptera (sens. str.): a review. J Orthoptera Res 17:189–196

    Article  Google Scholar 

  • Hochkirch A, Willemse LPM, Szovenyi G, Rutschmann F, Presa JJ, Krištín A, et al (2016) Pholidoptera griseoaptera. The IUCN red list of threatened species 2016: e.T68451642A74621940

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513

    Article  PubMed  Google Scholar 

  • Honěk A (1993) Intraspecific variation in body size and fecundity in insects—a general relationship. Oikos 66:483–492

    Article  Google Scholar 

  • Horne CR, Hirst AG, Atkinson D (2015) Temperature-size responses match latitudinal‐size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecol Lett 18:327–335

    Article  PubMed  Google Scholar 

  • Horne CR, Hirst AG, Atkinson D (2017) Seasonal body size reductions with warming co-vary with major body size gradients in arthropod species. Proc R Soc Lond B Bio 284:20170238

    Google Scholar 

  • Horne CR, Hirst AG, Atkinson D (2018) Insect temperature-body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes. Funct Ecol 32:948–957

    Article  Google Scholar 

  • Horne CR, Hirst AG, Atkinson D (2019) A synthesis of major environmental-body size clines of the sexes within arthropod species. Oecologia 190:343–353

    Article  PubMed  PubMed Central  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Ingrisch S (1986) The plurennial life cycles of the European Tettigoniidae (Insecta: Orthoptera). 1. The effect of temperature on embryonic development and hatching. Oecologia 70:606–616

    Article  PubMed  Google Scholar 

  • Joern A, Behmer ST (1997) Importance of dietary nitrogen and carbohydrates to survival, growth, and reproduction in adults of the grasshopper Ageneotettix deorum (Orthoptera: Acrididae). Oecologia 112:201–208

    Article  PubMed  Google Scholar 

  • Kaňuch P, Jarčuška B, Schlosserová D, Sliacka A, Paule L, Krištín A (2012) Landscape configuration determines gene flow and phenotype in a flightless forest-edge ground-dwelling bush-cricket, Pholidoptera griseoaptera. Evol Ecol 26:1331–1343

    Article  Google Scholar 

  • Kaňuch P, Jarčuška B, Kovács L, Krištín A (2015) Environmentally driven variability in size-selective females’ mating frequency of bush-cricket Pholidoptera griseoaptera. Evol Ecol 29:787–797

    Article  Google Scholar 

  • Kaňuch P, Krištín A (2009) Life strategies of Polysarcus denticauda (Orthoptera, Tettigoniidae) in extreme altitudes revealed by its somatic and population adaptations. Entomol Fenn 20:207–214

    Article  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Keller I, Alexander JM, Holderegger R, Edwards PJ (2013) Widespread phenotypic and genetic divergence along altitudinal gradients in animals. J Evol Biol 26:2527–2543

    Article  CAS  PubMed  Google Scholar 

  • King KJ, Sinclair BJ (2015) Water loss in tree weta (Hemideina): adaptation to the montane environment and a test of the melanisation–desiccation resistance hypothesis. J Exp Biol 218:1995–2004

    Article  PubMed  Google Scholar 

  • Köhler G, Samietz J, Schielzeth H (2017) Morphological and colour morph clines along an altitudinal gradient in the meadow grasshopper Pseudochorthippus parallelus. PLoS ONE 12:e0189815

    Article  PubMed  PubMed Central  Google Scholar 

  • Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Krištín A (ed) (2022) Pholidoptera griseopatera. Orthoptera of Slovakia. Accessed Feb 2022. http://orthoptera.sk/pho_gri.html

  • Kuyucu AC, Sahin MK, Caglar SS (2018) The relation between melanism and thermal biology in a colour polymorphic bush cricket, Isophya rizeensis. J Therm Biol 71:212–220

    Article  PubMed  Google Scholar 

  • Laiolo P, Illera JC, Obeso JR (2013) Local climate determines intra-and interspecific variation in sexual size dimorphism in mountain grasshopper communities. J Evol Biol 26:2171–2183

    Article  CAS  PubMed  Google Scholar 

  • Levy RA, Nufio CR (2015) Dispersal potential impacts size clines of grasshoppers across an elevation gradient. Oikos 124:610–619

    Article  Google Scholar 

  • Long JA (2020) jtools: analysis and presentation of social scientific data. R package version 2.1.0. Accessed July 2021. https://cran.r-project.org/package=jtools

  • Luke SG (2017) Evaluating significance in linear mixed–effects models in R. Behav Res 49:1494–1502

    Article  Google Scholar 

  • Massa B, Fontana P, Buzzetti FM, Kleukers R, Odé B (2012) Orthoptera. Fauna d’Italia, 48th edn. Calderini, Milano

    Google Scholar 

  • Merkel G (1977) The effects of temperature and food quality on the larval development of Gryllus bimaculatus (Orthoptera, Gryllidae). Oecologia 30:129–140

    Article  PubMed  Google Scholar 

  • Minards NA, Trewick SA, Godfrey AJR, Morgan-Richards M (2014) Convergent local adaptation in size and growth rate but not metabolic rate in a pair of parapatric Orthoptera species. Biol J Linn Soc 113:123–135

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956

    PubMed  Google Scholar 

  • Pincebourde S, Woods HA (2020) There is plenty of room at the bottom: microclimates drive insect vulnerability to climate change. Curr Opin Insect Sci 41:63–70

    Article  PubMed  Google Scholar 

  • Pincebourde S, Dillon ME, Woods HA (2021) Body size determines the thermal coupling between insects and plant surfaces. Funct Ecol 35:1424–1436

    Article  CAS  Google Scholar 

  • Pocco ME, Cigliano MM, Foquet B, Lange CE, Nieves EL, Song H (2019) Density-dependent phenotypic plasticity in the South American locust, Schistocerca cancellata (Orthoptera: Acrididae). Ann Entomol Soc Am 112:458–472

    Article  Google Scholar 

  • Purcell J, Pirogan D, Avril A, Bouyarden F, Chapuisat M (2016) Environmental influence on the phenotype of ant workers revealed by common garden experiment. Behav Ecol Sociobiol 70:357–367

    Article  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed July 2021. https://www.R-project.org/

  • Rasband WS, et al (1997–2018) ImageJ 1.53e. US National Institutes of Health, Bethesda, MD. Accessed July 2021. http://imagej.nih.gov/ij/

  • Revelle W (2021) psych: Procedures for Personality and Psychological Research, Northwestern University, Evanston, Illinois. Accessed July 2022. https://CRAN.R-project.org/package=psychVersion=2.1.6

  • Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014) Microgeographic adaptation and the spatial scale of evolution. Trends Ecol Evol 29:165–176

    Article  PubMed  Google Scholar 

  • Roff DA (1994) Habitat persistence and the evolution of wing dimorphism in insects. Am Nat 144:772–798

    Article  Google Scholar 

  • RStudio T (2019) RStudio: Integrated Development for R. Version 1.2.1335. RStudio, Inc., Boston, MA. Accessed July 2021. http://www.rstudio.com

  • Russell VL (2016) Least-squares means: the R Package lsmeans. J Stat Softw 69:1–33

    Google Scholar 

  • Samietz J, Salser MA, Dingle H (2005) Altitudinal variation in behavioural thermoregulation: local adaptation vs. plasticity in California grasshoppers. J Evol Biol 18:1087–1096

    Article  CAS  PubMed  Google Scholar 

  • Srygley RB (2021) Elevational changes in Mormon cricket life histories: minimum temperature for nymphal growth declines with elevation. Environ Entomol 50:167–172

    Article  CAS  PubMed  Google Scholar 

  • Šťastný P, Bochníček O, Faško P, Nejedlík P, Snopková Z (eds) (2015) Klimatický atlas Slovenska. [Climate atlas of Slovakia]. Slovenský hydrometeorologický ústav, Bratislava

  • Stillwell RC, Blanckenhorn WU, Teder T, Davidowitz G, Fox CW (2010) Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Ann Rev Entomol 55:227–245

    Article  CAS  Google Scholar 

  • Stoffel MA, Nakagawa S, Schielzeth H (2017) rptR: repeatability estimation and variance decomposition by generalized linear mixed–effects models. Methods Ecol Evol 8:1639–1644

    Article  Google Scholar 

  • Vahed K (1994) The evolution and function of the spermatophylax in bushcrickets (Orthoptera: Tettigoniidae). PhD thesis. University of Nottingham

  • Wiley JF (2020) multilevelTools: multilevel and Mixed Effects Model Diagnostics and Effect Sizes. R package version 0.1.1. Accessed July 2021. https://CRAN.R-project.org/package=multilevelTools

  • Whitman DW (2008) The significance of body size in the Orthoptera: a review. J Orthoptera Res 17:117–134

    Article  Google Scholar 

  • Zeuss D, Brunzel S, Brandl R (2017) Environmental drivers of voltinism and body size in insect assemblages across Europe. Glob Ecol Biogeogr 26:154–165

    Article  Google Scholar 

  • Zuna-Kratky TH, Landmann A, Illich I, Zechner L, Ess F, Lechner K et al (2017) Die Heuschrecken Österreichs. Oberösterreichisches Landesmuseum, Biologiezentrum/OÖ Landes-Kultur, Linz

    Google Scholar 

Download references

Acknowledgements

We thank Ľudmila Černecká, Martina Dorková, Matilda Jutzeler, Ladislav Naďo and Peter Tuček for their help in the field and/or laboratory and Boris Lipták for his help with photography and measurements of the traits. We also thank the three anonymous reviewers and the Associate Editor for their recommendations on the first drafts of the manuscript.

Funding

Slovak Scientific Grant Agency VEGA (Grant No. 2/0097/23).

Author information

Authors and Affiliations

Authors

Contributions

BJ: Conceptualization, Methodology, Investigation, Formal analysis, Writing—Original draft preparation, Supervision, Project administration, Funding acquisition. AK: Investigation, Writing—Review & Editing, Funding acquisition. PK: Investigation, Writing—Review & Editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Benjamín Jarčuška.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest or competing interests.

Ethics approval (include appropriate approvals or waivers)

Not applicable.

Consent for publication

All authors included on the submission contributed to the manuscript and have given consent to submit.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarčuška, B., Krištín, A. & Kaňuch, P. Body size traits in the flightless bush-cricket are plastic rather than locally adapted along an elevational gradient. Evol Ecol 37, 509–530 (2023). https://doi.org/10.1007/s10682-023-10231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-023-10231-x

Keywords

Navigation