Skip to main content

Advertisement

Log in

Local-scale environmental filtering shape plant taxonomic and phylogenetic diversity in an isolated Amazonian tepui (Tepequém table mountain)

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Understanding how environmental drivers induce changes in plant composition and diversity across evolutionary time can provide important insights into community assembly mechanisms. We evaluated how taxonomic and phylogenetic diversity and structure of plant communities change along a local-scale edaphic and elevational gradient in the Tepequém table mountain, Brazilian Amazon. We selected three phytophysiognomies along the altitudinal gradient: Open Rupestrian Grassland, Shrubby Rupestrian Grassland, and Forest. We compared community composition and taxonomic and phylogenetic diversity between phytophysiognomies, and analysed effects of altitude and soil properties on species richness and phylogenetic metrics using linear mixed-effects models. The highest species richness and phylogenetic diversity were found at a lower elevation for Forest. All standardised phylogenetic metrics were significantly lower in Shrubby Rupestrian Grassland. This phytophysiognomy showed phylogenetic clustering. Forest showed a cluster pattern when only terminal nodes are considered and random dispersion to deep phylogenetic nodes. Open Rupestrian Grassland also showed a random phylogenetic structure. The linear mixed-effects models showed that species richness and different phylogenetic structure metrics were explained by altitude and soil properties. Our study revealed that key plant diversity dimensions (i.e. taxonomic and phylogenetic) are shaped by a local-scale edaphic and elevational gradient on an isolated tepui of Brazilian Amazonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida-Filho R, Shimabukuro YE (2002) Digital processing of a Landsat-TM time series for mapping and monitoring degraded areas caused by independent gold miners, Roraima State, Brazilian Amazon. Remote SensEnviron 79:42–50

    Google Scholar 

  • Amâncio BCS, Govêa KP, Trindade LOR, Neto ARC, Souza TC, Barbosa S (2019) Sandwich method applied to the screening of allelopathic action in Byrsonima spp. (Malpighiaceae). Biologia 25:1–8

    Google Scholar 

  • Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. BotJ Linn Soc 181:1–20

    Article  Google Scholar 

  • Barbosa RI, Miranda IS (2004) Fitofisionomias e diversidade vegetal das Savanas se Roraima [Phytophysiognomies and plant diversity of the Roraima savanas]. In: Barbosa RI, Xaud HAM, Costa e Souza EM (eds) Savanas de Roraima: Etnoecologia, biodiversidade e potencialidades agrossilvipastoris. FEMACT: Boa Vista, pp. 61–78

  • Barton K (2017) ‘MuMIn’: Multi-Model Inference. R package version 1.40.0. https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf

  • Bates D, Maechler M, Ben Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Scheipl F, Grothendieck G, Green P, Fox J (2019) ‘lme4’: Linear Mixed-Effects Models using 'Eigen' and S4. R package version 1.1–21 https://cran.r-project.org/web/packages/lme4/lme4.pdf

  • Benites VM, Caiafa AN, Mendonça ES, EdeSá M, Schaefer CEGR, Ker JC (2003) Solos e vegetação nos complexos rupestres de altitude da Mantiqueira e do Espinhaço. Floram 10:76–85

    Google Scholar 

  • Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) (2017) Manual de Métodos de Análise de Solo, third ed. Embrapa Solos. Brasília

  • Braun-Blanquet J (1979) Phytosociology. Basis for the study of plant communities. Blume, Madrid

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35

    Article  Google Scholar 

  • Cadotte MW, Tucker CM (2017) Should environmental filtering be abandoned? Trends Ecol Evol 32:429–437

    Article  PubMed  Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079

    Article  Google Scholar 

  • Campos PV, Villa PM, Nunes JA, Schaefer CEGR, Porembski S, Neri AV (2018) Plant diversity and community structure of Brazilian Páramos. Jmt Sci 15:1186–1198

    Google Scholar 

  • Campos PV, Schaefer CEGR, Pontara V, Senra EO, Viana PL, Oliveira FS, Candido HG, Villa PM (2021) Exploring the relationship between soil and plant evolutionary diversity in the Roraima table mountain OCBIL, Guayana Highlands. Biol J Linn Soc XX:1–17

    Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  PubMed  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC (2014) Rarefaction and extrapolation with hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67

    Article  Google Scholar 

  • Chun JH, Lee CB (2018) Diversity patterns and phylogenetic structure of vascular plants along elevational gradients in a mountain ecosystem. South Korea J Mt Sci 15(2):280–295

    Article  Google Scholar 

  • Coelho MS, Fernandes GW, Pacheco P, Diniz V, Meireles A, dos Santos RM, Carvalho FA, Negreiros D (2016) Archipelago of montane forests surrounded by rupestrian grasslands: new insights and perspectives. In: Fernandes GW (ed) Ecology and conservation of mountaintop grasslands in Brazil. Springer International Publishing AG Switzerland, Cham, pp 129–156

    Chapter  Google Scholar 

  • Colwell RK, Chao A, Gotelli NJ, Lin S-Y, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J Plant Ecol 5:3–21

    Article  Google Scholar 

  • Cordeiro AAC, Neri AV (2019) Spatial patterns along an elevation gradient in high altitude grasslands, Brazil. Nord J Bot 37(2):1–10

    Google Scholar 

  • Crawley MJ (2013) The R Book, 2nd edn. Wiley, West Sussex, U.K.

    Google Scholar 

  • de Oliveira AA, Vicentini A, Chave J, Castanho CDT, Davies SJ, Martini AMZ, Lima RAF, Ribeiro RR, Iribar A, Souza VC (2014) Habitat specialization and phylogenetic structure of tree species in a coastal Brazilian white-sand forest. J Plant Ecol 7:134–144

    Article  Google Scholar 

  • Dinno A (2017) “dunn.test” package: Dunn's test of multiple comparisons using rank sums. R Studio package version online: https://CRAN.R-project.org/package=dunn.test. Accessed 7 Jan 2020

  • Faith DP (1992) Conservation Evaluation and Phylogenetic Diversity. Biolconserv 61:1–10

    Google Scholar 

  • Fernandes GW, Almeida HA, Nunes CA, Xavier JHA, Cobb NS, Carneiro MAA, Cornelissen T, Neves FS, Ribeiro SP, Nunes YRF, Pires ACV, Beirão MV (2016) Cerrado to rupestrian grasslands: patterns of species distribution and the forces shaping them along an altitudinal gradient. In: Fernandes GW (ed) Ecology and Conservation of Mountaintop Grasslands in Brazil. Springer International Publishing AG Switzerland, Cham, pp 345–371

    Chapter  Google Scholar 

  • Ferrari LT, Schaefer CEGR, Fernandes RBA, Mendonça BAF, Gjorup DF, Corrêa GR, Senra EO (2016) Thermic and Hydric Dynamics of Ironstone (Canga) and Quartzite Rupestrian Grasslands in the Quadrilátero Ferrífero: The Ecological Importance of Water. In: Fernandes GW (ed) Ecology and Conservation of Mountaintop Grasslands in Brazil. Springer International Publishing AG Switzerland, Cham, pp 71–85

    Chapter  Google Scholar 

  • Gastauer M, Meira-Neto JAA (2014) Interactions, environmental sorting and chance: phylostructure of a tropical forest assembly. Folia Geobot 49:443–459

    Article  Google Scholar 

  • Goberna M, García C, Verdú M (2014) A role for biotic filtering in driving phylogenetic clustering in soil bacterial communities. Global Ecol Biogeogr 23:1346–1355

    Article  Google Scholar 

  • Hadley W (2015) R ggplot2 package: An implementation of the grammar of graphics. https://ggplot2.org, https://github.com/hadley/ggplot2

  • Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods EcolEvol 7:1451–1456

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Oxford

    Google Scholar 

  • Huber O (1995) Geographical and physical features. In: Berry PE, Holst BK, Yatskievych K,(eds) Flora of the Venezuelan Guayana. vol. 1, Introduction. Missouri Botanical Garden Press, Saint Louis, pp. 1–61

  • Huber O (1987) Consideraciones sobre el concepto de Pantepui. Pantepui 2:2–10

    Google Scholar 

  • Husson F, Josse J, Le S, Mazet J (2017) “FactoMineR” package Multivariate: exploratory Data Analysis and Data Mining online: https://CRAN.R-project.org/package=FactoMineR. Accessed 9 Jan 2020

  • Huston MA (1993) Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86:393–401

    Article  Google Scholar 

  • Jin Y, Qian H (2019) V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecogeg 42:1353–1359

    Google Scholar 

  • Kembel SW, Ackerly DD, Blomberg SP, Cornwell WK, Cowan PD, Helmus MR, Morlon H, Webb CO (2015) Package “picante”. R tools for integrating phylogenies and ecology. R Package Version 1:6–2

    Google Scholar 

  • Körner C, Jetz W, Paulsen J, Payne D, Rudmann-Maurer K, Spehn EM (2017) A global inventory of mountains for biogeographical applications. Alp Bot 127:1–15

    Article  Google Scholar 

  • Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2015) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29:592–599

    Article  Google Scholar 

  • Le Stradic S, Buisson E, Fernandes GW (2015) Vegetation composition and structure of some neotropical mountain grasslands in Brazil. Jmt Sci 12:864–877

    Google Scholar 

  • Li XH, Zhu XX, Niu Y, Sun H (2014) Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China. J Syst Evol 52:280–288

    Article  Google Scholar 

  • Liu M, Che Y, Jiao J, Li L, Jiang X (2019a) Exploring the community phylogenetic structure along the slope aspect of subalpine meadows in the eastern Qinghai-Tibetan Plateau, China. Ecol Evol 9:5270–5280

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Qiao X, Wang Z, Lu S, Hou M, Wentworth TR, Hou D, Guo K (2019b) Distinct taxonomic and phylogenetic patterns of plant communities on acid and limestone soils in subtropical and tropical China. J Veg Sci 31:194–207

    Article  Google Scholar 

  • MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385

    Article  Google Scholar 

  • Manish K, Pandit MK (2018) Phylogenetic diversity, structure and diversification patterns of endemic plants along the elevational gradient in the Eastern Himalaya. Plant EcolDivers 11:501–513

    Google Scholar 

  • MayfieldMM LJM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093

    Article  Google Scholar 

  • McCain CM, Grytnes JA (2010) Elevational gradients in species richness. eLS 15:1–10

    Google Scholar 

  • Miazaki AS, Gastauer M, Meira-Neto JAA (2015) Environmental severity promotes phylogenetic clustering in campo rupestre vegetation. Acta Bot Bras 29:561–566

    Article  Google Scholar 

  • Moro MF, Martins FR (2011) Métodos de levantamento do componente arbóreo-arbustivo. In: Felfili JM, Eisenlohr PV, Melo MMRF, Andrade LA, Meira-Neto JAA (eds) Fitossociologia no Brasil: métodos e estudos de casos, vol 1. Editora. UFV, Viçosa, pp 174–212

    Google Scholar 

  • Mota NM, Rezende VL, Mota GS, Fernandes GW, Nunes YRF (2016) Forces driving the regeneration component of a rupestrian grassland complex along an altitudinal gradient. Braz J Bot 39(3):845–860

    Article  Google Scholar 

  • Mota GS, Luz GR, Mota NM, Coutinho ES, Veloso MDM, Fernandes GW, Nunes YRF (2018) Changes in species composition, vegetation structure, and life forms along an altitudinal gradient of rupestrian grasslands in Southeastern Brazil. Flora 238:32–42

    Article  Google Scholar 

  • Muscarella R, Bacon CD, Faurby S, Antonelli A, Kristiansen SM, Svenning JC, Balslev H (2018) Soil fertility and flood regime are correlated with phylogenetic structure of Amazonian palm communities. Ann Bot 123:641–655

    Article  PubMed Central  Google Scholar 

  • Nadeau MB, Sullivan TP (2015) Relationships between plant biodiversity and soil fertility in a mature tropical forest, Costa Rica. InterJFor Res 4:1–13

    Google Scholar 

  • Nascimento FA, Tavares Júnior SS, Beserra Neta LC (2012) Estudo dos compartimentos geomorfológicos na Serra do Tepequém-RR, através de fotointerpretação em imagens de sensores remotos e produtos integrados via ihs. Rev Geogr 2:1464–1474

    Google Scholar 

  • Neri AV, Borges GRA, Meira Neto JA, Magnago LFS, Trotter IM, Schaefer CEGR, Porembski S (2017) Soil and altitude drives diversity and functioning of Brazilian Páramos (campo de altitude). J Plant Ecol 10(5):731–743

    Google Scholar 

  • Nóbrega SR, Coelho ALF, Verola CF, Costa IR, Vilaça R, Luz FJF, Araújo WF (2016) Chromosome variations and diversity of Epidendrum ibaguense Lindl. (Orchidaceae) on the Tepequém’s Tepuy Roraima, Brazil. GMR 16:1–7

    Google Scholar 

  • Nunes JA, Schaefer CEGR, Ferreira-Junior WG, Neri AV, Corrêa GR, Enrigth NJ (2015) Soil-vegetation relationships on a banded ironstone ‘island’, Carajás Plateau, Brazilian Eastern Amazonia. An AcadBras Ciênc 87:2097–2110

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens H, Wagner HH (2018) Vegan: Community Ecology Package. R package version 2.0–7

  • OliveiraACP SASPRF, Loiola MIB (2012) Composição florística de uma comunidade savânica no Rio Grande do Norte, Nordeste do Brasil. Acta Bot Bras 26:559–569

    Article  Google Scholar 

  • Pashirzad M, Ejtehadi H, Vaezi J, Shefferson RP (2018) Spatial scale-dependent phylogenetic signal in species distributions along geographic and elevation gradients in a mountainous rangeland. EcolEvol, 00: 1–10

  • Pavoine S (2016) A guide through a family of phylogenetic dissimilarity measures among sites. Oikos, 1719–1732

  • Pavoine S. (2018) Package “adiv”

  • Pontara V, Bueno ML, Rezende VL, de Oliveira-Filho AT, Gastauer M, Meira-Neto JAA (2018) Evolutionary history of campo rupestre: an approach for conservation of woody plant communities. Biodivers Conserv 27:2877–2896

    Article  Google Scholar 

  • Porembski S (2007) Tropical inselbergs: habitats types, adaptive strategies and diversity patterns. Rev Bras Bot 30:579–586

    Article  Google Scholar 

  • Qian H, Sandel B (2017) Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradientes in North America. Glob Ecol Biogeogr 26:1258–1269

    Article  Google Scholar 

  • Qian H, Hao Z, Zhang J (2014) Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. Jplant Ecol 2:154–165

    Article  Google Scholar 

  • R Core Team(2020) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2014. R Foundation for Statistical Computing

  • Ramos NC, Gastauer M, de Almeida ACC, Meira-Neto JAA (2015) Environmental filtering of agroforestry systems reduces the risk of biological invasion. Agrof Syst 89:279–289

    Article  Google Scholar 

  • Reis NJ, Carvalho AS (1996) Coberturas sedimentares do Mesoproterozoico do estado Roraima—Avaliação e discussão de seu modo de ocorrência. Rev Bras Geogr 26:217–226

    Google Scholar 

  • Rezende VL, Pontara V, Bueno ML, van den Berg E, Oliveira-Filho AT (2019) Climate and evolutionary history define the phylogenetic diversity of vegetation types in the central region of South America. Oecologia 192:191–200

    Article  PubMed  Google Scholar 

  • Rull V (2007) The Guayana Highlands: a promised (but threatened) land for ecological and evolutionary science. Biotropica 39:31–34

    Article  Google Scholar 

  • Rull V, Vegas-Vilarrúbia T, Safont E (2016) The Lost World’s pristinity at risk. Divers Distrib 22:995–999

    Article  Google Scholar 

  • Rull V, Montoya E, Nogué S, Safont E, Vegas-Vilarrúbia T (2019) Climatic and ecological history of Pantepui and surrounding areas. In: Rull V, Huber O, Vegas-Vilarrúbia T, Señaris C (eds) Biodiversity Pantepui Pristine “Lost World” Neotropical Guiana Highlands, Barcelona, pp. 33–54

  • Safford HD (1999) Brazilian Páramos II. Macro—and mesoclimate of the campos de altitude and affinities with high mountain climates of the tropical Andes and Costa Rica. J Biogeogr 26:713–737

    Article  Google Scholar 

  • Safont E, Rull V, Vegas-Vilarrúbia T, Holst BK, Huber O, Nozawa S, Vivas Y, Silva A (2014) Establishing a baseline of plant diversity and endemism on a neotropical mountain summit for future comparative studies assessing upward migration: anapproach from biogeography and nature conservation. Syst Biodivers 12:292–314

    Article  Google Scholar 

  • Safont E, Rull V, Vegas-Vilarrúbia T, Montoya E, Huber O, Holst BK (2016) Late Holocene vegetation and fire dynamics on the summits of the Guayana Highlands: the Uei-tepui palynological record. Palaeogeogr PalaeoclimatolPalaeoecol 455:33–43

    Article  Google Scholar 

  • Schaefer CEGR, Corrêa GR, Candido HG, Arruda DM, Nunes JA, Araujo RW, Rodrigues PMS, Filho EIF, Pereira AFS, Brandão PC, Neri AV (2016) The physical environment of rupestrian grasslands (campos rupestres) in Brazil: geological, geomorphological and pedological characteristics, and interplays. In: Fernandes GW (eds) Ecology and Conservation of Mountaintop Grasslands in Brazil. Springer International Publishing AG Switzerland, pp. 15–53.

  • Schmitz D, Schaefer CEGR, Putzke J, Francelino MR, Ferrari FR, Corrêa GR, Villa PM (2020) How does the pedoenvironmental gradient shape non-vascular species assemblages and community structures in Maritime Antarctica? Ecol Indic 108:105726

    Article  Google Scholar 

  • Silva WA, Villa PM, Schaefer CEGR, Ferreira-Júnior WG, Campos PV, Fialho IF, Neri AV (2019) Diversity and life forms of a woody herbaceous community on the quartzite rocky complexes in the Brazilian Iron Quadrangle. Rev Biol Trop 67(3):357–369

    Google Scholar 

  • Silva EL (1997) A Vegetação de Roraima. In: Barbosa RI, Ferreira EJG, Castellón EG, eds. Homem, Ambiente e Ecologia no Estado de Roraima (eds) INPA. Manaus, pp. 401–415.

  • Silveira FAO, Negreiros D, Barbosa NPU, Buisson E, Carmo FF, Carstensen DW, Conceição AA, Cornelissen TG, Echternacht L, Fernandes GW, Garcia QS, Guerra TJ, Jacobi CM, Lemos-Filho JP, Le Stradic S, Morellato LPC, Neves FS, Oliveira RS, Schaefer CE, Viana PL, Lambers H (2016) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil 403:129–152

    Article  CAS  Google Scholar 

  • SobralFL CMV (2012) Estrutura filogenética e funcional de assembléias: (Re)montando a ecologia de comunidades em diferentes escalas espaciais. Jbiosci 28:617–631

    Google Scholar 

  • Swenson NG (2014) Functional and phylogenetic ecology in R. Springer, New York

    Book  Google Scholar 

  • Tilman D (1985) The resource-ratio hypothesis of plant succession. Am Nat 125:439–464

    Article  Google Scholar 

  • Vegas-Vilarrúbia T, Nogué S, Rull V (2012) Global warming, habitat shifts and potential refugia for biodiversity conservation in the neotropical Guayana Highlands. BiolConserv 152:159–168

    Google Scholar 

  • Vellend M (2010) Conceptual synthesis in community ecology. Quarterly Rev Biol 85(2):183–206

    Article  Google Scholar 

  • Villa PM, Martins SV, Oliveira Neto SN, Rodrigues AC, Martorano LG, Monsanto LD, Cancio NM, Gastauer M (2018) Intensification of shifting cultivation reduces forest resilience in the northern Amazon. Forest Ecol Manag 430:312–320

    Article  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Evol S 33:475–505

    Article  Google Scholar 

  • Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155

    Article  PubMed  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol S 36:519–539

    Article  Google Scholar 

  • Xu WM, Ci XQ, Song CY, He TH, Zhang WF, Li QM, Li J (2016) Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest. Ecol Evol 6:8719–8726

    Article  PubMed  PubMed Central  Google Scholar 

  • Zappi DC, Moro MF, Meagher TR, Lughadha EN (2017) Plant biodiversity drivers in brazilian campos rupestres: insights from phylogenetic structure. Front Plant Sci 8:1–15

    Article  Google Scholar 

  • Zappi C, Moro MF, Walker B, Meagher T, Viana PL, Mota NFO, Watanabe MTC, Lughadha EM (2019) Plotting a future for Amazonian canga vegetation in a campo rupestre context. PLoS ONE 14:1–19

    Article  Google Scholar 

  • Zhang J, Mayor SJ, He F (2014) Does disturbance regime change community assembly of angiosperm plant communities in the boreal forest? Jplant Ecol 7:188–201

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) for granting a scholarship to the first author. The last author received PDJ scholarships from the Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brazil.

Author information

Authors and Affiliations

Authors

Contributions

PVC, CEGRS, VP and PMV conceived the idea and designed methodology. PVC, MVBX, JFVJ and GRC collected the samples. PVC, VP and PMV analyzed the taxonomic and phylogenetic data. PVC wrote of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Prímula Viana Campos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 544 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, P.V., Schaefer, C.E.G.R., Pontara, V. et al. Local-scale environmental filtering shape plant taxonomic and phylogenetic diversity in an isolated Amazonian tepui (Tepequém table mountain). Evol Ecol 36, 55–73 (2022). https://doi.org/10.1007/s10682-021-10141-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-021-10141-w

Keywords

Navigation