Skip to main content
Log in

A multivariate phylogenetic comparative method incorporating a flexible function between discrete and continuous traits

  • Methods
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

One major challenge of using the phylogenetic comparative method (PCM) is the analysis of the evolution of interrelated continuous and discrete traits in a single multivariate statistical framework. In addition, more intricate parameters such as branch-specific directional selection have rarely been integrated into such multivariate PCM frameworks. Here, originally motivated to analyze the complex evolutionary trajectories of group size (continuous variable) and social systems (discrete variable) in African subterranean rodents, we develop a flexible approach using approximate Bayesian computation (ABC). Specifically, our multivariate ABC-PCM method allows the user to flexibly model an underlying latent evolutionary function between continuous and discrete traits. The ABC-PCM also simultaneously incorporates complex evolutionary parameters such as branch-specific selection. This study highlights the flexibility of ABC-PCMs in analyzing the evolution of phenotypic traits interrelated in a complex manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beauchamp G (1999) The evolution of communal roosting in birds: origin and secondary losses. Behav Ecol 10:675–687

    Article  Google Scholar 

  • Beaumont MA (2010) Approximate Bayesian computation in evolution and ecology. Ann Rev Ecol Evol Syst 41:379–406

    Article  Google Scholar 

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett NC, Faulkes CG (2000) African mole-rats: ecology and eusociality. Cambridge University Press, Cambridge

    Google Scholar 

  • Bennett NC, Jarvis JUM, Cotterill FPD (1994) The colony structure and reproductive biology of the afrotropical Mashona mole-rat, Cryptomys darlingi. J Zool 234:477–487

    Article  Google Scholar 

  • Bokma F (2010) Time, species, and separating their effects on trait variance in clades. Syst Biol 59:602–607

    Article  PubMed  Google Scholar 

  • Burda H, Kawalika M (1993) Evolution of eusociality in the Bathyergidae: the case of the giant mole-rat (Cryptomys mechowi). Naturwissenschaften 80:235–237

    Article  CAS  PubMed  Google Scholar 

  • Burda H, Honeycutt RL, Begall S, Locker-Grütjen O, Scharff A (2000) Are naked and common mole-rats eusocial and if so, why? Behav Ecol Sociobiol 47:293–303

    Article  Google Scholar 

  • Csillery K, Blum MG, Gaggiotti OE, François O (2010) Approximate Bayesian computation (ABC) in practice. Trends Ecol Evol 25:410–418

    Article  PubMed  Google Scholar 

  • Duffy JM, Macdonald KS (2010) Kin structure, ecology and the evolution of social organization in shrimp: a comparative analysis. Proc R Soc B 277:575–584

    Article  PubMed  Google Scholar 

  • Emlen ST (1982) The evolution of helping. I. An ecological constraints model. Am Nat 119:29–39

    Article  Google Scholar 

  • Faulkes CG, Bennett NC (2013) Plasticity and constraints on social evolution in African mole-rats: ultimate and proximate factors. Philos. T. R. Soc. B. 368:20120347

    Article  Google Scholar 

  • Faulkes CG, Bennett NC, Bruford MW, O’brien HP, Aguilar GH, Jarvis JUM (1997) Ecological constraints drive social evolution in the African mole–rats. Proc R Soc B 264:1619–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faulkes CG, Verheyen E, Verheyen W, Jarvis JUM, Bennett NC (2004) Phylogeographical patterns of genetic divergence and speciation in African mole-rats (Family: Bathyergidae). Mol Ecol 13:613–629

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Felsenstein J (2005) Using the quantitative genetic threshold model for inferences between and within species. Philos Trans R Soc B 360:1427–1434

    Article  Google Scholar 

  • Felsenstein J (2012) A comparative method for both discrete and continuous characters using the threshold model. Am Nat 179:145–156

    Article  PubMed  Google Scholar 

  • Garamszegi LZ (2014) Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice. Springer, Heidelberg

    Book  Google Scholar 

  • Hadfield JD (2015) Increasing the efficiency of MCMC for hierarchical phylogenetic models of categorical traits using reduced mixed models. Methods Ecol Evol 6(6):706–714

    Article  Google Scholar 

  • Hadfield JD, Nakagawa S (2009) General quantitative methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23:494–508

    Article  Google Scholar 

  • Harano T, Kutsukake N (2018) Directional selection in the evolution of elongated upper canines in clouded leopards and sabre-toothed cats. J Evol Biol 31:1268–1283

    Article  PubMed  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Ives AR, Garland T (2010) Phylogenetic logistic regression for binary dependent variables. Syst Biol 59:9–26

    Article  PubMed  Google Scholar 

  • Ives AR, Garland T (2014) Phylogenetic regression for binary dependent variables. In: Garamszegi LZ (ed) Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice. Springer, Heidelberg, pp 231–261

    Chapter  Google Scholar 

  • Janzen T, Hoehna S, Etienne RS (2015) Approximate Bayesian computation of diversification rates from molecular phylogenies: introducing a new efficient summary statistic, the nLTT. Methods Ecol Evol 6:566–575

    Article  Google Scholar 

  • Jarvis JUM (1981) Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science 212:571–573

    Article  CAS  PubMed  Google Scholar 

  • Jarvis JUM, Bennett NC (1993) Eusociality has evolved independently in two genera of bathyergid mole-rats—but occurs in no other subterranean mammal. Behav Ecol Sociobiol 33:253–260

    Article  Google Scholar 

  • Jones K, Bielby J, Cardillo M, Fritz S (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648

    Article  Google Scholar 

  • Kutsukake N, Innan H (2013) Simulation-based likelihood approach for evolutionary models of phenotypic traits on phylogeny. Evolution 67:355–367

    Article  PubMed  Google Scholar 

  • Kutsukake N, Innan H (2014) Detecting phenotypic selection by approximate Bayesian computation (ABC) in phylogenetic comparative methods. In: Garamszegi LZ (ed) Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice. Springer, Heidelberg, pp 409–424

    Chapter  Google Scholar 

  • Leuenberger C, Wegmann D (2010) Bayesian computation and model selection without likelihoods. Genetics 184:243–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925

    Article  CAS  PubMed  Google Scholar 

  • Marjoram P, Tavare S (2006) Modern computational approaches for analysing molecular genetic variation data. Nat Genet Rev 7:759–770

    Article  CAS  Google Scholar 

  • Marjoram P, Molitor J, Plagnol V, Tavare S (2003) Markov chain Monte Carlo without likelihoods. Proc Natl Acad Sci USA 100:15324–15328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunn CL (2011) The comparative approach in evolutionary anthropology and biology. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Pagel M (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc B 255:37–45

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Sheehan MJ, Botero CA, Hendry TA, Sedio BE, Jandt JM, Weiner S, Toth AL, Tibbetts EA (2015) Different axes of environmental variation explain the presence vs. extent of cooperative nest founding associations in Polistes paper wasps. Ecol Lett 18:1057–1067

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherman PW, Jarvis JUM, Alexander RD (1991) The biology of the naked mole-rat. Princeton University Press, Princeton

    Google Scholar 

  • Shultz S, Opie C, Atkinson QD (2011) Stepwise evolution of stable sociality in primates. Nature 479:219–222

    Article  CAS  PubMed  Google Scholar 

  • Sichilima AM, Faulkes CG, Bennett NC (2008) Field evidence for a seasonality of reproduction and colony size in the Afrotropical giant mole-rat Fukomys mechowii (Rodentia: Bathyergidae). Afr Zool 43:144–149

    Article  Google Scholar 

  • Sichilima AM, Bennett NC, Faulkes CG, Bronner GN (2011) Field evidence for colony size and aseasonality of breeding and in Ansell’s mole-rat, Fukomys anselli (Rodentia: Bathyergidae). Afr Zool 46:334–339

    Google Scholar 

  • Slater GJ, Harmon LJ, Wegmann D, Joyce P, Revell LJ, Alfaro ME (2012) Fitting models of continuous trait evolution to incompletely sampled comparative data using approximate Bayesian computation. Evolution 66:752–762

    Article  PubMed  Google Scholar 

  • Van Daele PA, Blonde P, Stjernstedt R, Adriaens D (2013) A new species of African mole-rat (Fukomys, Bathyergidae, Rodentia) from the Zaire-Zambezi watershed. Zootaxa 3636:171–189

    Article  PubMed  Google Scholar 

  • Wcislo WT, Danforth BN (1997) Secondarily solitary: the evolutionary loss of social behavior. Trends Ecol Evol 12:468–474

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1934) An analysis of variablity in number of digits in an inbred strain of guniea pigs. Genetics 19(6):506–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young AJ, Jarvis JUM, Barnaville J, Bennett NC (2015) Workforce effects and the evolution of complex society in wild Damaraland mole rats. Am Nat 186:302–311

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dustin R. Rubenstein, Rafael Maia, and Margaret E. O’Brien at Columbia University and Jessica Zung at Princeton University for useful comments and advice. Masahito Tsuboi at University of Oslo also provided useful insights on the earlier version of manuscript. Two reviewers gave detailed and helpful comments on the manuscript. This study was financially supported by MEXT (No. 25711025) to K. N.

Author information

Authors and Affiliations

Authors

Contributions

YH and KN conceived, designed, and performed the analysis. Both discussed the result and wrote the final manuscript.

Corresponding author

Correspondence to Yuki Haba.

Ethics declarations

Conflict of interest

Both authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 458 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haba, Y., Kutsukake, N. A multivariate phylogenetic comparative method incorporating a flexible function between discrete and continuous traits. Evol Ecol 33, 751–768 (2019). https://doi.org/10.1007/s10682-019-10011-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-019-10011-6

Keywords

Navigation