Skip to main content
Log in

Microsatellite DNA analysis of population structure in Cornops aquaticum (Orthoptera: Acrididae), over a cline for three Robertsonian translocations

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The grasshopper Cornops aquaticum occurs between Mexico (23°N) and Uruguay and Central Argentina (35°S). It was recently introduced as a pest control agent of the neotropical water-hyacinth Eichhornia crassipes in South Africa. The information about the amount and distribution of genetic variability of the native populations may optimise the results of biological control programmes. Here we analyse microsatellite variability at the south of C. aquaticum’s distribution, coinciding with a cline for three polymorphic Robertsonian translocations along the Paraná River in order to: (1) estimate the amount of intrapopulation variation and its correlation with geographic/climatic variables, (2) infer interpopulation genetic variation and assess connectivity between local populations and (3) compare chromosome, morphometric and molecular variation patterns to analyse the probable causes involved in the maintenance of intraspecific variation. Our sample of 170 individuals of C. aquaticum from seven Argentine populations between latitudes 27°S to 34°S showed 211 alleles across seven microsatellite loci. Genetic diversity was estimated through average number of alleles, allelic richness, expected heterozygosity and observed heterozygosity. The analysis of molecular variance showed significant genetic differentiation among populations. Pairwise comparisons of FST/RST and Bayesian population assignment method and the discriminant analysis of principal components revealed that the two southernmost populations are more differentiated. Genetic diversity is negatively correlated with Southern latitude and with Robertsonian translocation frequencies. Our results showed that the Paraná River’s middle course populations are genetically undifferentiated and more genetically diverse than the highly chromosomally polymorphic downstream ones. The chromosomal polymorphisms are associated with increased body size in the direction in which larger size is adaptive. This may be relevant for C. aquaticum’s role as a pest control agent, since chromosome variability would enhance the ability of the species for a successful settlement in its new habitats, especially in temperate regions of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adis J, Bustorf E, Lhano MG, Amédègnato C, Nunes AL (2007) Distribution of Cornops grasshoppers (Leptysminae: Acrididae: Orthoptera) in Latin America and the Caribbean Islands. Stud Neotrop Fauna Environ 42:11–24

    Article  Google Scholar 

  • Adis J, Sperber CF, Brede EG, Capello S, Franceschini MC, Hill M (2008) Morphometric differences in the grasshopper Cornops aquaticum (Bruner, 1906) from South America and South Africa. J Orth Res 17:141–147

    Article  Google Scholar 

  • Adrion JR, Hahn MW, Cooper BS (2015) Revisiting classic clines in Drosophila melanogaster in the age of genomics. Trends Genet 31:434–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala FS, Serra L, Prevosti A (1989) A grand experiment in evolution: the Drosophila subobscura colonization of the Americas. Genome 31:246–255

    Article  Google Scholar 

  • Bidau CJ (1991) Multivalents resulting from monobrachial homologies within a hybrid zone in Dichroplus pratensis (Acrididae): meiotic orientation and segregation. Heredity 66:219–232

    Article  Google Scholar 

  • Bidau CJ, Gimenez MD, Palmer CL, Searle JB (2001) The effects of Robertsonian fusions on chiasma frequency and distribution in the house mouse (Mus musculus domesticus) from a hybrid zone in northern Scotland. Heredity 87:305–313

    Article  CAS  PubMed  Google Scholar 

  • Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5(4):165–174

    Article  Google Scholar 

  • Blanckenhorn WU, Demont M (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integr Comp Biol 44:413–424

    Article  CAS  PubMed  Google Scholar 

  • Bownes A (2009) Evaluation of a plant–herbivore system in determining potential efficacy of a candidate biological control agent, Cornops aquaticum for water hyacinth, Eichhornia crassipes. Unpublished D. Phil. Thesis. Rhodes University, Grahamstown

  • Bownes A, King A, Nongogo A (2011) Pre-release studies and release of the Grasshopper Cornops aquaticum in South Africa—a new biological control agent for water hyacinth, Eichhornia crassipes. In: XIII international symposium on biological control of weeds, Waikoloa, Hawaii, USA. September 3–13, pp 11–16

  • Brede EG, Beebee TJC (2005) Polymerase chain reaction primers for microsatellite loci in the semi-aquatic grasshopper, Cornops aquaticum. Mol Ecol 5:914–926

    Article  CAS  Google Scholar 

  • Brede EG, Adis J, Schneider P (2008) Genetic diversity, population structure and gene flow in native populations of a proposed biological agent (Cornops aquaticum). Biol J Linn Soc 95:666–676

    Article  Google Scholar 

  • Capello S, de Wysiecki M, Marchese M (2010) Feeding patterns of the aquatic grasshopper Cornops aquaticum (Bruner) (Orthoptera: Acrididae) in the middle Paraná River, Argentina. Neotrop Entomol 40:170–175

    Google Scholar 

  • Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623

    Article  CAS  PubMed  Google Scholar 

  • Center TD, Hill M, Cordo H, Julien MH (2002) Waterhyacinth. In: Van Driesche R, Blossey B, Hoddle M, Lyon S, Reardon S (eds) Biological control of invasive plants in the eastern United States. Forest Health and Technology Enterprises Team, West Virginia, pp 41–64

    Google Scholar 

  • Coetzee JA, Hill MP, Byrne MJ, Bownes A (2011) A review on the biological control programmes on Eichhornia crassipes (C.Mart.) Solms (Pontederiaceae), Salvinia molesta D.S. Mitch (Salviniaceae), Pistia stratiotes L. (Araceae), Myriophyllum aquaticum (Vell.) Verdc. (Haloragaceae) and Azolla filiculoides Lam. (Azollaceae) in South Africa. Afr Entomol 19:451–468

    Article  Google Scholar 

  • Colombo PC (2007) Effects of polymorphic Robertsonian rearrangements on the frequency and distribution of chiasmata in the water-hyacinth grasshopper, Cornops aquaticum (Acrididae, Orthoptera). Eur J Entomol 104:653–659

    Article  Google Scholar 

  • Colombo PC (2008) Cytogeography of three parallel Robertsonian polymorphisms in the water-hyacinth grasshopper, Cornops aquaticum. Eur J Entomol 105:59–64

    Article  Google Scholar 

  • Colombo PC (2009) Metaphase I orientation of Robertsonian trivalents in the water-hyacinth, Cornops aquaticum (Acrididae: Orthoptera). Genet Mol Biol 32:91–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Colombo PC (2013) Micro-evolution in grasshoppers mediated by polymorphic robertsonian translocations. J Ins Sci 13:43

    Google Scholar 

  • Colombo PC, Remis MI (2015) Morphometric variation in chromosomally polymorphic grasshoppers (Orthoptera: Acrididae) from South America: Bergmann and converse Bergmann patterns. Fl Entomol 98:570–574

    Article  CAS  Google Scholar 

  • Colombo PC, Remis MI (in preparation) Population cytology and morphometrical effects in the water-hyacinth grasshopper. Cornops aquaticum (Acrididae: Orthoptera)

  • Dumas D, Britton-Davidian J (2002) Chromosomal rearrangements and evolution of recombination: comparison of chiasma distribution patterns in standard and Robertsonian populations of the house mouse. Genetics 162:1355–1366

    PubMed  PubMed Central  Google Scholar 

  • Earl DA, Von Holdt BM (2012) Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Cons Genet Resources 4:359–361

    Article  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  PubMed  Google Scholar 

  • Endler JA (1977) Geographic variation, speciation and clines. Monographs in population biology. No. 10. Princeton University Press, Princeton

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351

    Article  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50

    CAS  Google Scholar 

  • Faria R, Navarro A (2010) Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol 25:660–669

    Article  PubMed  Google Scholar 

  • Franceschini MC, de Wysiecki ML, Poi de Neiff A, Galassi ME, Martínez S (2011) The role of the specific grasshopper Cornops aquaticum (Orthoptera: Acrididae) as consumer of native water hyacinth populations. Rev Biol Trop 59:1407–1418

    PubMed  Google Scholar 

  • Franchini P, Colangelo P, Solano E, Capanna E, Verheyen E, Castiglia R (2010) Reduced gene flow at pericentromeric loci in a hybrid zone involving chromosomal races of the house mouse Mus musculus domesticus. Evolution 64:2020–2032

    PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3)

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  CAS  PubMed  Google Scholar 

  • Hallatschek O et al (2007) Genetic drift at expanding frontiers promotes gene segregation. Proc Natl Acad Sci USA 104:19926–19930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jombart T, Devillard S, Bailloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structures populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • John B, Hewitt GM (1970) Inter-population sex chromosome polymorphism in the grasshopper Podisma pedestris. I. Fundamental facts. Chromosoma 31:291–308

  • Kandus P, Quintana R, Bó R (2006) Patrones de Paisaje y Biodiversidad del Bajo Delta del Río Paraná. P. Casamajor Ediciones, Argentina

    Google Scholar 

  • Laayouni H, García Franco F, Chávez Sandoval BE, Trotta V, Beltran S, Corominas M, Santos M (2007) Thermal evolution of gene expression profiles in Drosophila subobscura. BMC Evol Biol 7:e42

    Article  Google Scholar 

  • Lowe A, Harris S, Ashton P (2004) Ecological genetics. Blackwell Publishing, Design

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • McGuigan K (2006) Studying phenotypic evolution using multivariate quantitative genetics. Mol Ecol 15:883–896

    Article  CAS  PubMed  Google Scholar 

  • Mesa A (1956) Los cromosomas de algunos Acridoideos uruguayos (Orth. Caelifera. Acridoidea). Agros 141:32–45

  • Mesa A, Ferreira A, Carbonell C (1982) Cariología de los acrídidos Neotropicales: estado actual de su conocimiento y nuevas contribuciones. Ann Soc Entomol Fr (NS) 18:507–526

    Google Scholar 

  • Miño CI, Gardenal CN, Bidau CJ (2011) Morphological, genetic, and chromosomal variation at a small spatial scale within a mosaic hybrid zone of the grasshopper Dichroplus pratensis Bruner (Acrididae). J Hered. doi:10.1093/jhered/esq119

    PubMed  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) Bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  PubMed  Google Scholar 

  • Oberholzer I, Hill M (2001) How safe is the grasshopper, Cornops aquaticum for release on hyacinth in South Africa? In: Julien MH, Hill, Center TD Ding J (eds) Biological and integrated control of water hyacinth, Eichhornia crassipes. Proceedings of the second global working group meeting for the biological and integrated control of water hyacinth. ACIAR proceedings No. 102, pp 82–88

  • Oosterhout CV, HutchinsonWF Wills DPM, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Prevosti A, Ribó D, Serra L, Aguadé M, Balanyá J, Monclús M, Mestres J (1988) Colonization of America by Drosophila subobscura; experiment in natural populations that supports the adaptive role of chromosomal inversion polymorphism. Proc Natl Acad Sci 85:5597–5600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  PubMed  Google Scholar 

  • Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358

    Article  PubMed  Google Scholar 

  • Romero ML, Colombo PC, Remis MI (2011) Chromosome, genetic and morphometric variation of the aquatic grasshopper Cornops aquaticum (Bruner) (Acrididae: Leptysminae) in the middle and lower Paraná River, Argentina. Paper presented at the 59th Annual Meeting of the Entomological Society of America. Reno, Nevada, EEUU, 13–17 November 2011

  • Romero ML, Colombo PC, Remis ML (2014) Morphometric differentiation in Cornops aquaticum (Orthoptera: Acrididae): associations with sex, chromosome, and geographic conditions. J Ins Sci 14:164

    Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Sesarini C, Remis MI (2008) Molecular and morphometric variation in chromosomally polymorphic populations of the grasshopper Sinipta dalmani (Orthopthera: Acrididae). Genetica 133:295–306

    Article  CAS  PubMed  Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102

    Article  Google Scholar 

  • Statistica Statsoft Inc (1999) Statistica 5 for Windows (Computer Program Manual). Statistica, Tulsa

    Google Scholar 

  • Strand AE, Williams LM, Oleksiak MF, Sotka EE (2012) Can diversifying selection be distinguished from history in geographic clines? A population genomic study of killifish (Fundulus heteroclitus). PLoS ONE 7:e45138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasburg JL, Scotti-Saintagne C, Scotti I, Lai Z, Rieseberg LH (2009) Genomic patterns of adaptive divergence between chromosomally differentiated sunflower species. Mol Biol Evol 26:1341–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taffarel A, Bidau CJ, Marti DA (2015) Chromosome fusion polymorphisms in the grasshopper, Dichroplus fuscus (Orthoptera: Acrididae: Melanoplinae): Insights on meiotic effects. Eur J Entomol 112:11–19

    Google Scholar 

  • Taylor SJ, Downie DA, Paterson LD (2011) Genetic diversity of introduced populations of the waterhyacinth biological control agent Eccritotarsus catarinensis (Hemiptera: Miridae). Biol Control 58:330–336

    Article  Google Scholar 

  • Vasemagi A (2006) The adaptive hypothesis of clinal variation revisited: single-locus clines as a result of spatially restricted gene flow. Genetics 173:2411–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wajnberg E (2004) Measuring genetic variation in natural enemies used for biological control. In: Ehler L, Sforza R, Mateille T (eds) Why and how? Genetics, evolution and biological control. CAB International, Wallingford, pp 19–37

    Chapter  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Werle SF (2005) Populations of a Connecticut River midge structured by geological history and downstream gene flow. Chromosome Res 13:97–106

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Drs. S. Capello, M.C. Franceschini, M. Marchese, Club de Regatas Rosario, Club Náutico San Pedro and Club Náutico Zárate for assistance in the collection of most specimens, and to two anonymous reviewers whose suggestions substantially improved the quality of the manuscript. Funding provided by CONICET (11220130100492CO) and Universidad de Buenos Aires (20020130100358BA) through Grants to Dr. M.I. Remis is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Isabel Remis.

Additional information

P.C. Colombo and M.I. Remis are Researchers of the National Council of Scientific and Technological Research (CONICET; Argentina).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, M.L., Colombo, P.C. & Remis, M.I. Microsatellite DNA analysis of population structure in Cornops aquaticum (Orthoptera: Acrididae), over a cline for three Robertsonian translocations. Evol Ecol 31, 937–953 (2017). https://doi.org/10.1007/s10682-017-9915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-017-9915-2

Keywords

Navigation