Skip to main content
Log in

Host-parasite evolution in male-haploid hosts: an individual based network model

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Host-parasite co-evolution is a key component of the Red Queen Hypothesis (RQH). The RQH currently being one of the main hypotheses describing the evolution of sex and recombination. However, most analyses in this area have either ignored parasite transmission or included it either with mean field or simple frequency based models. Moreover models have rarely addressed the issue of male haploid species. We here use agent based models to qualify the interactions between host- and parasite-based transmission parameters and virulence comparing diploid with male-haploid species. We found diploid hosts to have a higher fitness under the inverse matching allele mode compared to male haplodiploid hosts which in turn have a higher fitness under the matching allele model . Selection for recombination was rare but whenever selection for recombination was evident (<6.6 %), the resulting recombination rates were both consistently higher and more frequent in male haploids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal A, Lively C (2002) Infection genetics: gene-for-gene versus matching-alleles models and points in between. Evol Ecol Res 4:79–80

    Google Scholar 

  • Agrawal A, Otto S (2006) Host-parasite coevolution and selection on sex through the effects of segregation. Am Nat 168(5):617–629

    Article  PubMed  Google Scholar 

  • Agrawal AF (2009) Differences between selection on sex versus recombination in red queen models with diploid hosts. Evolution 63(8):2131–2141

    Article  PubMed  Google Scholar 

  • Ames G, George D, Hampson C, Kanarek A, McBee C, Lockwood D, Achter J, Webb C (2011) Using network properties to predict disease dynamics on human contact networks. Proc R Soc B 278:3544–3550

    Article  PubMed Central  PubMed  Google Scholar 

  • Barton N (1995) A general model for the evolution of recombination. Genet Res 65:123–144

    Article  CAS  PubMed  Google Scholar 

  • Boots M, Mealor M (2007) Local interactions select for lower pathogen infectivity. Science 315:1284–1286

    Article  CAS  PubMed  Google Scholar 

  • Carroll L (1960) 2 The garden of live flowers. Through the looking-glass and what alice found there (The Annotated Alice: Alice’s Adventures in Wonderland and Through the Looking-Glass, illustrated by John Tenniel, with an Introduction and Notes by Martin Gardner ed.). The New American Library, New York

  • Crawley M (2005) Statistics: an introduction using R. Wily, West Sussex

    Book  Google Scholar 

  • Engelstädter J, Bonhoeffer S (2009) Red queen dynamics with non-standard fitness interactions. PLOS Comput Biol 5(e1000):469

    Google Scholar 

  • Hodgeson E, Otto S (2012) The red queen coupled with directional selection favours the evolution of sex. J Evol Biol 25:797–802

    Article  Google Scholar 

  • Jäger I, Schjorring S (2006) Multiple infections: Relatedness and time between infections affect the establishment and growth of the cestode schistocephalus solidus in its stickleback host. Evolution 60(3):616–622

  • Keeling M (1999) The effects of local spatial structure on epidemiological invasions. Proc R Soc B 266:859–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kidner J, Moritz R (2013) The red queen process does not select for high recombination rates in haplodiploid hosts. Evol Biol 40(3):377–384

    Article  Google Scholar 

  • King K, Seppälä O, Neiman M (2012) Is more better? Polyploidy and parasite resistance. Biol Lett 8:598–600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lively C (2010) An epidemiological model of host-parasite coevolution and sex. J Evol Biol 23:1490–1497

    Article  CAS  PubMed  Google Scholar 

  • Meznar E, Gadau J, Koeniger N, Rueppell O (2010) Comparative linkage mapping suggests a high recombination rate in all honeybees. J Hered 101:s118–s126

    Article  CAS  PubMed  Google Scholar 

  • M’Gonigle L, Otto S (2011) Ploidy and the evolution of parasitism. Proc R Soc B 278:2814–2822

    Article  PubMed Central  PubMed  Google Scholar 

  • Normark BB (2003) The evolution of alternative genetic systems in insects. Annu Rev Entomol 48:397–423

    Article  CAS  PubMed  Google Scholar 

  • Nuismer S, Otto S (2004) Host-parasite interactions and the evolution of ploidy. PNAS 101:11,036–11,039

    Article  CAS  Google Scholar 

  • Oswald B, Nuismer S (2007) Neopolyploidy and pathogen resistance. Proc R Soc B 274:2393–2397

    Article  PubMed Central  PubMed  Google Scholar 

  • Otterstatter MC, Thomson JD (2007) Contact networks and transmission of an intestinal pathogen in bumble bee ( Bombus impatiens) colonies. Oecologia 154:411–421

    Article  PubMed  Google Scholar 

  • Otto S, Marks J (1996) Mating systems and the evolutionary transition between haploidy and diploidy. Biol J Linn Soc 57:197–218

    Article  Google Scholar 

  • Otto S, Nuismer S (2004) Species interactions and the evolution of sex. Science 304:1018

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Lively C (1999) The red queen and fluctuating epistasis: a population genetic analysis of antagonistic coevolution. Am Nat 154:393–405

    Article  PubMed  Google Scholar 

  • Peters A, Lively C (2007) Short- and long-term benefits and detriments to recombination under antagonistic coevolution. J Evol Biol 20:1206–1217

    Article  CAS  PubMed  Google Scholar 

  • Popp M, Erler S, Lattorf HMG (2012) Seasonal variability of prevalence and occurrence of multiple infections shape the population structure of crithidia bombi, an intestinal parasite of bumblebees ( bombus spp.). MicrobioligyOpen 1(4):362–372

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Fundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Roode JD, Yates A, Altizer S (2008) Virulence-transmission trade-offs and population divergence in virulence in a naturally occuring butterfly parasite. Proc Nat Acad Sci USA 105:7489–7494

    Article  PubMed Central  PubMed  Google Scholar 

  • Salathé M, Kouyos R, Regoes R, Bonhoeffer S (2007) Rapid parasite adaptation drives selection for high recombination rates. Evolution 62:295–300

    Article  PubMed  Google Scholar 

  • Schjorring S, Koella JC (2003) Sub-lethal effects of pathogens can lead to the evolution of lower virulence in multiple infections. Proc R Soc Lond Ser B 270(1511):189–193

    Article  Google Scholar 

  • Schmid-Hempel P, Jokela J (2002) Socially structured populations and evolution of recombination under antagonistic coevolution. Am Nat 160(3):403–408

    Article  PubMed  Google Scholar 

  • Shykoff J, Schmid-Hempel P (1991) Incidence and effects of four parasites in natural populations of bumble bees in switzerland. Apidologie 22:117–125

    Article  Google Scholar 

  • Stolle E, Wilfert L, Schmid-Hempel R, Schmid-Hempel P, Kube M, Reinhardt R, Moritz R (2011) A second generation genetic map of the bumblebee bombus terrestris (linnaeus, 1758) reveals slow genome and chromosome evolution in the apidae. BMC Genom 12:48

    Article  CAS  Google Scholar 

  • Sutton J, Nakagawa S, Robertson B, Jamieson I (2011) Disentangling the roles of natural selection and genetic drift in shaping variation at mhc immunity genes. Mol Ecol 20:4408–4420

    Article  PubMed  Google Scholar 

  • Takahashi Y, Morita S, Yoshimura J, Watanabe M (2011) A geographic cline induced by negative frequency-dependent selection. BMC Evol Biol 11:256–266

    Article  PubMed Central  PubMed  Google Scholar 

  • Webb S, Keeling M, Boots M (2013) A theoretical study of the role of spatial population structure in the evolution of parasite virulence. Theor Popul Biol 84:36–45

    Article  PubMed  Google Scholar 

  • Wilfert L, Gadau J, Schmid-Hempel P (2007) The genetic architecture of immune defense and reproduction in male bombus terrestris bumblebees. Evolution 61:804–815

    Article  PubMed  Google Scholar 

  • Williams T, Kelly C (2003) GNUPLOT: an interactive plotting program. http://www.gnuplot.info

Download references

Acknowledgments

Funding for the research was provided by the Deutsche Forschungsgemeinschaft within the priority program SPP 1399 and by yDiv, the Synthesis Centre for Biodiversity Sciences—a unit of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, also funded by the Deutsche Forschunggemeinschaft (FZT 118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kidner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kidner, J., Moritz, R.F.A. Host-parasite evolution in male-haploid hosts: an individual based network model. Evol Ecol 29, 93–105 (2015). https://doi.org/10.1007/s10682-014-9722-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-014-9722-y

Keywords

Navigation