Skip to main content
Log in

Genetic variation and the potential response to selection on leaf traits after habitat degradation in a long-lived cycad

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Rapid evolution may be common in human-dominated landscapes where environmental changes are severe. We used phenotypic selection analyses and a marker-based method to estimate genetic variances and covariances to predict the potential response to selection in populations of a long-lived cycad recently exposed to drastic environmental changes. Patterns of selection in adult fecundity showed that different traits were under directional selection in subpopulations from native-undisturbed habitats and the novel degraded-forest habitat. Plants from a native-habitat subpopulation tend to maximize fitness through larger leaf area or smaller specific leaf area (SLA). In contrast, larger leaf production increased fitness in a degraded-habitat subpopulation, and canopy openness appears to be a major agent of selection for this trait. Leaf production and SLA showed significant additive genetic variance and no genetic trade-offs with examined traits, suggesting that these traits can respond to selection. Directional selection coefficients and heritability values were large, therefore significant phenotypic changes between subpopulations in few generations are possible. These results suggest that recent environmental change can result in strong directional selection in subpopulations of this cycad, and that these subpopulations have the potential to diverge at the genetic level in leaf traits after anthropogenic habitat degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Linder CR, Sandquist DR, Geber MA, Evans AS, Dawson TE, Lechowicz MJ (2000) The evolution of plant ecophysiological traits: recent advances and future directions. Bioscience 50:979–995

    Article  Google Scholar 

  • Albert CH, Grasseina F, Schurrd FM, Vieilledente G, Violle C (2011) When and how should intraspecific variability be considered in trait-based plant ecology? Pers Plant Ecol Evol Syst 13:217–255

    Article  Google Scholar 

  • Andrew RL, Peakall R, Wallis IR, Wood JT, Knight EJ, Foley WJ (2005) Marker-based quantitative genetics in the wild? The heritability and genetic correlation of chemical defenses in Eucalyptus. Genetics 171:1989–1998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arntz AM, Delph LF (2001) Pattern and process: evidence for the evolution of photosynthetic traits in natural populations. Oecologia 127:455–457

    Article  Google Scholar 

  • Ashley MV, Willson MF, Pergams ORW, O’Dowd DJ, Gende SM, Brown JS (2003) Evolutionary enlighted management. Biol Cons 111:115–123

    Article  Google Scholar 

  • Ashman TL, Penet L (2007) Direct and indirect effects of a sex-biased antagonist on male and female fertility: consequences for reproductive trait evolution in a gender-dimorphic plant. Am Nat 169:595–608

    Article  PubMed  Google Scholar 

  • Blundell AG, Peart DR (2001) Growth strategies of a shade-tolerant tropical tree: the interactive effects of canopy gaps and simulated herbivory. J Ecol 89:608–615

    Article  Google Scholar 

  • Bone E, Farres A (2001) Trends and rates of microevolution in plants. Genetica 112–113:165–182

    Article  PubMed  Google Scholar 

  • Brienen RJW, Zuidema PA (2006) Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J Ecol 94:481–493

    Article  Google Scholar 

  • Carroll SP, Hendry AP, Reznick DN, Fox CW (2007) Evolution on ecological time-scales. Func Ecol 21:387–393

    Article  Google Scholar 

  • Castellanos MC, Alcantara JM, Rey PJ, Bastida JM (2011) Intra-population comparison of vegetative and floral trait heritabilities estimated from molecular markers in wild Aquilegia populations. Mol Ecol 20:3513–3524

    PubMed  Google Scholar 

  • Chazdon RL, Pearcy RW, Lee DW, Fetcher N (1996) Photosynthetic responses of tropical forest plants to contrasting light environments. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical plant forest ecophysiology. Chapman and Hall, New York

    Google Scholar 

  • Clark DA, Clark DB (1987) Temporal and environmental patterns of reproduction in Zamia skinneri, a tropical rain forest cycad. J Ecol 75:135–149

    Article  Google Scholar 

  • Clark DB, Clark DA (1988) Leaf production and the cost of reproduction in the Neotropical rain-forest cycad, Zamia-Skinneri. J Ecol 76:1153–1163

    Article  Google Scholar 

  • Clark DB, Clark DA (1991) Hervibores, hervibory and plant phenology patterns and consequences in a tropical rain forest cycad. In: Price P, Fernandez GW, Lewisohn TM, Benson WW (eds) Plant animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York

    Google Scholar 

  • Clark DB, Clark DA, Grayum MH (1992) Leaf demography of a Neotropical rain-forest cycad, Zamia skinneri (Zamiaceae). Am J Bot 79:28–33

    Article  Google Scholar 

  • DeKort H, Vandepitte K, Honnay O (2013) A meta-analysis of the effects of plant traits and geographical scale on the magnitude of adaptive differentiation as measured by the difference between Q(ST) and F-ST. Evol Ecol 27:1081–1097

    Article  Google Scholar 

  • Donovan L, Maherali H, Caruso CM, Huber H, de Kroon H (2011) The evolution of the worldwide leaf economics spectrum. TREE 26:88–95

    PubMed  Google Scholar 

  • Evans JR, Poorter H (2001) Photosynthetic acclimation of plant to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell Environ 24:755–767

    Article  CAS  Google Scholar 

  • Geber MA, Griffen LR (2003) Inheritance and natural selection on functional traits. Int J Plant Sci 164:S21–S42

    Article  Google Scholar 

  • Gomez LD (1982) Plantae Mesoamericanae novae II. Phytologia 50:401–404

    Google Scholar 

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711

    Article  CAS  PubMed  Google Scholar 

  • Hairston NG, Ellner SP, Geber MA, Yoshida T, Fox JA (2005) Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett 8:1114–1127

    Article  Google Scholar 

  • Hendry AP, Kinnison MT (1999) The pace of modern life: measuring rates of contemporary evolution. Evolution 53:1637–1653

    Article  Google Scholar 

  • Hendry AP, Kinnison MT (2001) An introduction to microevolution: rate, pattern, process. Genetica 112–113:1–8

    PubMed  Google Scholar 

  • Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hoang A, Hill CE, Beerli P, Kingsolver JG (2001) Strength and tempo of directional selection in the wild. Proc Natl Acad Sci USA 98:9157–9160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Irwin RE (2006) The consequences of direct versus indirect species interactions to selection on traits: pollination and nectar robbing in Ipomopsis aggregata. Am Nat 167:315–328

    Article  PubMed  Google Scholar 

  • Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hoang A, Hill CE, Gilbert P, Beerli P (2001) The strength of phenotypic selection in natural populations. Am Nat 157:246–261

    Article  Google Scholar 

  • Kinnison MT, Hairston NG (2007) Eco-evolutionary conservation biology: contemporary evolution and the dynamics of persistence. Func Ecol 21:444–454

    Article  Google Scholar 

  • Kinnison MT, Hendry AP (2001) The pace of modern life II: from rates of contemporary microevolution to pattern and processes. Genetica 112–113:145–164

    Article  PubMed  Google Scholar 

  • Kinnison MT, Hendry AP, Stockwell CA (2007) Contemporary evolution meets conservation biology II: impediments to integration and application. Ecol Res 22:947–954

    Article  Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    Article  Google Scholar 

  • Lee DW, Bone RA, Tarsis SL, Storch D (1990) Correlates of leaf optical properties in tropical forests sun and extreme-shade plants. Am J Bot 77:370–380

    Article  Google Scholar 

  • Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS ONE 3:e4010

    Article  PubMed Central  PubMed  Google Scholar 

  • Lopez-Gallego C, O’Neil P (2010) Life-history variation following habitat degradation associated with differing fine-scale spatial genetic structure in a rainforest cycad. Popul Ecol 52:191–201

    Article  Google Scholar 

  • Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for Neotropical trees. Heredity 95:255–273

    Article  CAS  PubMed  Google Scholar 

  • Montgomery RA (2004) Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient. Tree Physiol 24:155–167

    Article  PubMed  Google Scholar 

  • Montgomery RA, Chazdon RL (2001) Forest structure, canopy architecture, and light transmittance in tropical wet forests. Ecology 82:2707–2718

    Article  Google Scholar 

  • Negron-Ortiz V, Gorchov DL (2000) Effects of fire season and postfire herbivory on the cycad Zamia pumila (Zamiaceae) in slash pine savanna, Everglades National Park, Florida. Int J Plant Sci 161:659–669

    Article  CAS  Google Scholar 

  • Negron-Ortiz V, Gorchov DL, Breckon GJ (1996) Population structure in Zamia (Zamiaceae) in Northern Puerto Rico. II Seed germination and stage structured population projection. Int J Plant Sci 157:605–614

    Article  Google Scholar 

  • Nicotra AB, Chazdon RL, Iriarte S (1999) Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests. Ecology 80:1908–1926

    Article  Google Scholar 

  • Noble IR, Dirzo R (1997) Forest as human-dominated ecosystems. Science 277:522–525

    Article  CAS  Google Scholar 

  • Norstog KJ, Nicholls TJ (1998) The biology of the cycads. Cornell University Press, Ithaca

    Google Scholar 

  • Ornduff R (1991) Conning phenology of the cycad Macrozamia riedlei (Zamiaceae) over a five-year interval. Bull Torrey Bot Club 118:6–11

    Article  Google Scholar 

  • Osada N, Takeda H, Kitajima K, Pearcy RW (2003) Functional correlates of leaf demographic response to gap release in saplings of a shade-tolerant tree, Elateriospermum tapos. Oecologia 137:181–187

    Article  PubMed  Google Scholar 

  • Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790

    Article  CAS  PubMed  Google Scholar 

  • Perez-Farrera MA, Vovides AP, Aguilar PO, Gonzales-Astorga J, Rodriguez J, Hernandez-Jonapa R, Villalobos-Mendez SM (2006) Demography of the cycad Ceratozamia mirandae (Zamiaceae) under disturbed and undisturbed conditions in a biosphere reserve of Mexico. Plant Ecol 187:97–108

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, deVos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, terSteege H, van-der-Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardized measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Syst 37:187–214

    Article  Google Scholar 

  • Phillips PC, Arnold SJ (1989) Visualizing multivariate selection. Evolution 43:1209–1222

    Article  Google Scholar 

  • Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Poorter H, Lambers H, Evans JR (2014) Trait correlation networks: a whole-plant perspective on the recently criticized leaf economic spectrum. New Phytol 201:378–382

    Article  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164:S143–S164

    Article  Google Scholar 

  • Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112–113:183–198

    Article  PubMed  Google Scholar 

  • Ritland K (1996) A marker-based method for inferences about quantitative inheritance in natural populations. Evolution 50:1062–1073

    Article  Google Scholar 

  • Ritland K (2000) Marker-inferred relatedness as a tool for detecting heritability in nature. Mol Ecol 9:1195–1204

    Article  CAS  PubMed  Google Scholar 

  • Ritland K (2006) Mark: genetic marker analysis program. University of British Columbia, Vancouver

    Google Scholar 

  • Rosenberg MS (2001) PASSAGE: pattern analysis, spatial statistics, and geographic exegesis. Dept. Biology, Arizona State University, Tempe

    Google Scholar 

  • Santiago LS, Kitajima K, Wright SJ, Mulkey SS (2004) Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia 139:495–502

    Article  PubMed  Google Scholar 

  • Scheiner SM, Mitchell RJ, Callahan HS (2000) Using path analysis to measure natural selection. J Evolution Biol 13:423–433

    Article  Google Scholar 

  • Scheiner SM, Donohue K, Dorn LA, Mazer SJ, Wolfe LM (2002) Reducing environmental bias when measuring natural selection. Evolution 56:2156–2167

    Article  PubMed  Google Scholar 

  • Shipley B, Lechowics MJ, Wright I, Reich PB (2006) Fundamental trade-offs generating the worldwide leaf economic spectrum. Ecology 87:535–541

    Article  PubMed  Google Scholar 

  • Sillanpaa MJ (2011) On statistical methods for estimating heritability in wild populations. Mol Ecol 20:1324–1332

    Article  PubMed  Google Scholar 

  • Sims DA, Gebauer RLF, Pearcy RW (1994) Scaling sun and shade photosynthetic acclimation of Alocasia macrorrhiza to whole-plant performance. 2. Simulation of carbon balance and growth at different photon flux densities. Plant, Cell Environ 17:889–900

    Article  CAS  Google Scholar 

  • Stinchcombe JR (2002) Fitness consequences of cotyledon and mature-leaf damage in the ivyleaf morning glory. Oecologia 131:220–226

    Article  Google Scholar 

  • Stockwell CA, Hendry AP, Kinnison MT (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18:94–101

    Article  Google Scholar 

  • Tabarelli M, Da Silva MJC, Gascon C (2004) Forest fragmentation, synergisms and the impoverishment of Neotropical forests. Biodivers Conserv 13:1419–1425

    Article  Google Scholar 

  • Tang W (1990) Reproduction in the cycad Zamia pumila in a fore-climax habitat: an eight-year study. Bull Torrey Bot Club 117:368–374

    Article  Google Scholar 

  • Thomas SC, Pemberton JM, Hill WG (2000) Estimating variance components in natural populations using inferred relationships. Heredity 84:427–436

    Article  PubMed  Google Scholar 

  • Valladares F, Niinemets U (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39:237–257

    Article  Google Scholar 

  • Wade MJ, Kalisz S (1990) The causes of natural selection. Evolution 44:1947–1955

    Article  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. TREE 21:261–268

    PubMed  Google Scholar 

  • Wright JP, Sutton-Grier A (2012) Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Funct Ecol 26:1390–1398

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Zimmer C (2003) Rapid evolution can foil even the best-laid plans. Science 300:895

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the personnel at Corcovado National Park (Costa Rica) for assistance in the field. Genetic analyses were carried out at Dr. Mohamed Noor (Lousiana State University, USA) and Dr. Loren Rieseberg (Indiana University, USA) labs, and we thank all the people in these labs for their help. CLG thanks all members in the dissertation committee and especially Dr. Johanna Schmitt for their constant support during this research. Funding for the project was provided by the University of New Orleans, The Cycad Society and Montgomery Botanical Center (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Lopez-Gallego.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Gallego, C., O’Neil, P. Genetic variation and the potential response to selection on leaf traits after habitat degradation in a long-lived cycad. Evol Ecol 28, 775–791 (2014). https://doi.org/10.1007/s10682-014-9704-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-014-9704-0

Keywords

Navigation