Skip to main content

Advertisement

Log in

Life history focus on a malaria parasite: linked traits and variation among genetic clones

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Life history theory has long been a major campaign in evolutionary ecology, but has typically focused only on animals and plants. Life history research on single-celled eukaryotic protists such as malaria parasites (Plasmodium) will offer new insights into the theory’s general utility as well as the parasite’s basic biology. For example, parasitologists have described the Plasmodium life cycle and cell types in exquisite detail, with little discussion of evolutionary issues such as developmental links between traits. We measured 10 life history traits of replicate single-genotype experimental Plasmodium mexicanum infections in its natural lizard host to identify groups of linked traits. These 10 traits formed 4 trait groups: “Rate/Peak” merges measures of growth rate and maximum parasitemia of infections; “Timing” combines time to patency and maximum parasitemia; “Growth Shape” describes the fit to an exponential growth curve; and “Sex Ratio” includes only the gametocyte sex ratio. Parasite genotype (clone) showed no effect on the life history trait groups, with the exception of gametocyte sex ratio. Therefore, variation in most life history traits among infections appears to be driven by environmental (individual host) effects. The findings support the model that life history traits are often linked by developmental constraints. Understanding why life history traits of Plasmodium are linked in this way would offer a new window into the evolution of the parasites, and also should inform public health efforts to control infection prevalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Olayan EM, Williams GT, Hurd H (2002) Apoptosis in the malaria protozoan, Plasmodium berghei: a possible mechanism for limiting intensity of infection in the mosquito. Int J Parasitol 32:1133–1143

    Article  CAS  PubMed  Google Scholar 

  • Anderson TJC, Williams JT, Nair S et al (2010) Inferred relatedness and heritability in malaria parasites. Proc R Soc Lond B 277:2531–2540

    Article  Google Scholar 

  • Barclay VC, Sim D, Chan BHK et al (2012) The evolutionary consequences of blood-stage vaccination on the rodent malaria Plasmodium chabaudi. PLoS Biol 10:e1001368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bromwich CR, Schall JJ (1986) Infection dynamics of Plasmodium mexicanum, a malarial parasite of lizards. Ecology 67:1227–1235

    Article  Google Scholar 

  • Buckling AG, Taylor LH, Carlton JM et al (1997) Adaptive changes in Plasmodium transmission strategies following chloroquine chemotherapy. Proc R Soc Lond B 264:553–559

    Article  CAS  Google Scholar 

  • Buckling AG, Crooks L, Read AF (1999) Plasmodium chabaudi: effect of antimalarial drugs on gametocytogenesis. Exp Parasitol 93:45–54

    Article  CAS  PubMed  Google Scholar 

  • Burkot TR, Williams JL, Schneider I (1984) Infectivity to mosquitoes of Plasmodium falciparum clones grown in vitro from the same isolate. Trans R Soc Trop Med Hyg 78:339–341

    Article  CAS  PubMed  Google Scholar 

  • Charnov EL (1993) Life history invariants: some explorations of symmetry in evolutionary ecology. Oxford University Press, New York

    Google Scholar 

  • de Roode JC, Helinski MEH, Anwar MA et al (2005) Dynamics of multiple infection and within-host competition in genetically diverse malaria infections. Am Nat 166:531–542

    Article  PubMed  Google Scholar 

  • Dunlap KD, Schall JJ (1995) Hormonal alterations and reproductive inhibition in male fence lizards (Sceloporus occidentalis) infected with the malaria parasite Plasmodium mexicanum. Physiol Zool 68:608–621

    CAS  Google Scholar 

  • Edwards AWF (2000) Carl Düsing (1884) on the regulation of the sex-ratio. Theor Pop Biol 58:255–257

    Article  CAS  Google Scholar 

  • Eisen RJ (2000) Variation in life-history traits of Plasmodium mexicanum, a malaria parasite infecting western fence lizards: a longitudinal study. Can J Zool 78:1230–1237

    Google Scholar 

  • Eisen RJ, Schall JJ (2000) Life history of a malaria parasite (Plasmodium mexicanum): independent traits and basis for variation. Proc R Soc Lond B 267:793–799

    Article  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Dover Publications, New York

    Google Scholar 

  • Ford AM, Schall JJ (2011) Relative clonal proportions over time in mixed-genotype infections of the lizard malaria parasite Plasmodium mexicanum. Int J Parasitol 41:731–738

    Article  CAS  PubMed  Google Scholar 

  • Fricke JM, Vardo-Zalik AM, Schall JJ (2010) Geographic genetic differentiation of a malaria parasite, Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis. J Parasitol 96:308–313

    Article  PubMed  Google Scholar 

  • Gotelli NJ (2008) A primer of ecology. Sinauer Associates, Sunderland

    Google Scholar 

  • Gotelli NJ, Ellison AM (2004) A primer of ecological statistics. Sinauer Associates, Sunderland

    Google Scholar 

  • Graves PM, Carter R, McNeill KM (1984) Gametocyte production in cloned lines of Plasmodium falciparum. Am J Trop Med Hyg 33:1045–1050

    CAS  PubMed  Google Scholar 

  • Guilbride DL, Guilbride PDL, Gawlinski P (2012) Malaria’s deadly secret: a skin stage. Trends Parasitol 4:142–150

    Article  Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science 156:477–488

    Article  CAS  PubMed  Google Scholar 

  • Joliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Mackinnon MJ, Read AF (1999a) Genetic relationships between parasite virulence and transmission in the rodent malaria Plasmodium chabaudi. Evolution 53:689–703

    Article  Google Scholar 

  • Mackinnon MJ, Read AF (1999b) Selection for high and low virulence in the malaria parasite Plasmodium chabaudi. Proc R Soc Lond B 266:741–748

    Article  CAS  Google Scholar 

  • Martinsen ES, Perkins SL, Schall JJ (2008) A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life history traits and host switches. Mol Phylogenet Evol 47:261–273

    Article  CAS  PubMed  Google Scholar 

  • Mideo N, Day T (2008) On the evolution of reproductive restraint in malaria. Proc R Soc Lond B 275:1217–1224

    Article  Google Scholar 

  • Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59:181–197

    Article  PubMed  Google Scholar 

  • Neal AT (2011) Male gametocyte fecundity and sex ratio of a malaria parasite, Plasmodium mexicanum. Parasitology 138:1203–1210

    Article  CAS  PubMed  Google Scholar 

  • Neal AT, Schall JJ (2010) Gametocyte sex ratio in single-clone infections of the malaria parasite Plasmodium mexicanum. Parasitology 137:1851–1859

    Article  CAS  PubMed  Google Scholar 

  • Osgood SM, Schall JJ (2004) Gametocyte sex ratio of a malaria parasite: response to experimental manipulation of parasite clonal diversity. Parasitology 128:23–29

    Article  CAS  PubMed  Google Scholar 

  • Osgood SM, Eisen RJ, Schall JJ (2002) Gametocyte sex ratio of a malaria parasite: experimental test of heritability. J Parasitol 88:494–498

    PubMed  Google Scholar 

  • Osgood SM, Wargo A, Eisen RJ et al (2003) Manipulation of host’s testosterone does not affect gametocyte sex ratio of a malaria parasite. J Parasitol 89:190–192

    Article  CAS  PubMed  Google Scholar 

  • Paul RE, Day KP (1998) Mating patterns of Plasmodium falciparum. Parasitol Today 14:197–202

    Article  CAS  PubMed  Google Scholar 

  • Perkins SL, Osgood SM, Schall JJ (1998) Use of PCR for detection of subpatent infections of lizard malaria: implications for epizootiology. Mol Ecol 7:1587–1590

    Article  CAS  Google Scholar 

  • Pollitt LC, Mideo N, Drew DR et al (2011) Competition and evolution of reproductive restraint in malaria parasites. Am Nat 177:358–367

    Article  PubMed  Google Scholar 

  • Read AF, Day KP (1992) The genetic structure of malaria parasite populations. Parasitol Today 8:239–242

    Article  CAS  PubMed  Google Scholar 

  • Reece SE, Drew DR, Gardner A (2008) Sex ratio adjustment and kin discrimination in malaria parasites. Nature 453:609–614

    Article  CAS  PubMed  Google Scholar 

  • Reece SE, Ramiro RS, Nussey DH (2009) Plastic parasites: sophisticated strategies for survival and reproduction. Evol Appl 1:11–23

    Article  Google Scholar 

  • Reznick D, Endler JA (1982) The impact of predation on life history evolution in the Trinidadian guppies (Poecilia reticulata). Evolution 36:160–177

    Article  Google Scholar 

  • Schall JJ (1989) The sex ratio of Plasmodium gametocytes. Parasitology 98:343–350

    Article  PubMed  Google Scholar 

  • Schall JJ (1990) Virulence of lizard malaria: the evolutionary ecology of an ancient parasite-host association. Parasitology 100:S35–S52

    Article  PubMed  Google Scholar 

  • Schall JJ (1996) Malaria parasites of lizards: diversity and ecology. Adv Parasitol 37:255–333

    CAS  PubMed  Google Scholar 

  • Schall JJ (2009) Do malaria parasites follow the algebra of sex ratio theory? Trends Parasitol 25:120–123

    Article  PubMed  Google Scholar 

  • Schall JJ, Marghoob AB (1995) Prevalence of a malarial parasite over time and space: Plasmodium mexicanum in its vertebrate host, the western fence lizard, Sceloporus occidentalis. J Anim Ecol 64:177–185

    Article  Google Scholar 

  • Schall JJ, St. Denis KM (2013) Microsatellite loci over a thirty-three year period for a malaria parasite (Plasmodium mexicanum): bottlenecks in effective population size and effect on allele frequencies. Parasitology 140:21–28

    Article  CAS  PubMed  Google Scholar 

  • Schall JJ, Vardo AM (2007) Identification of microsatellite markers in Plasmodium mexicanum, a lizard malaria parasite that infects nucleated erythrocytes. Mol Ecol Notes 7:227–229

    Article  CAS  Google Scholar 

  • Schall JJ, Bennett AF, Putnam RW (1982) Lizards infected with malaria: physiological and behavioral consequences. Science 217:1057–1058

    Article  CAS  PubMed  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, New York

    Google Scholar 

  • Taylor LH, Read AF (1997) Why so few transmission stages? Reproductive restraint by malaria parasites. Parasitol Today 13:135–140

    Article  CAS  PubMed  Google Scholar 

  • Taylor LH, Walliker D, Read AF (1997) Mixed-genotype infections of malaria parasites: within-host dynamics and transmission success of competing clones. Proc R Soc Lond B 264:927–935

    Article  CAS  Google Scholar 

  • Van Noordwijk AJ, De Jong G (1986) Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat 128:137–142

    Article  Google Scholar 

  • Vardo AM, Schall JJ (2007) Clonal diversity of a lizard malaria parasite, Plasmodium mexicanum, in its vertebrate host, the western fence lizard: role of variation in transmission intensity over time and space. Mol Ecol 16:2712–2720

    Article  CAS  PubMed  Google Scholar 

  • Vardo-Zalik AM, Schall JJ (2008) Clonal diversity within infections and the virulence of a malaria parasite, Plasmodium mexicanum. Parasitology 135:1363–1372

    Article  CAS  PubMed  Google Scholar 

  • Vardo-Zalik AM, Schall JJ (2009) Clonal diversity alters the infection dynamics of a malaria parasite (Plasmodium mexicanum) in its vertebrate host. Ecology 90:529–536

    Article  PubMed  Google Scholar 

  • West SA (2009) Sex allocation. Princeton University Press, Princeton

    Google Scholar 

Download references

Acknowledgments

N. Hicks and J. Grauer assisted with the field experiments, and J. Grauer, K. St. Denis, N. Hicks, P. Teixeira, W. C. Stevens, D. Golschneider, and M. Lind assisted with the lab duties. We also thank the staff of the Hopland Research and Extension Center for all their help and support. The research was supported by funding from the US National Science Foundation (grant number DEB-0813832 to JJS) and ATN was supported by a US National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison T. Neal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10682_2013_9654_MOESM1_ESM.eps

Supplemental Figure 1: Scree plots with (a) and without (b) sex ratio included. The y-axis shows the percent of the total variation explained (eigenvalue) by each principal component (x-axis). Scree plots are used in principal components analysis for judging the number of meaningful principal components. The plot can be imagined as a mountainside with rubble (scree) at the bottom: the points making up the “mountainside” represent principal components that explain a large proportion of variation, whereas the “scree” are the points that contribute very little to explaining variation. The vertical lines on this plot represent the number of components we selected for analysis based on these plots. (EPS 5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neal, A.T., Schall, J.J. Life history focus on a malaria parasite: linked traits and variation among genetic clones. Evol Ecol 28, 89–102 (2014). https://doi.org/10.1007/s10682-013-9654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-013-9654-y

Keywords

Navigation