Skip to main content
Log in

Using successional theory to measure marine ecosystem health

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Marine ecosystems are diverse and complex, providing significant challenges to the development of generalizable metrics of ecosystem health. Of particular concern is the varied form of change caused by multiple human activities, which limits the capacity to generate a single measure to encapsulate the overall condition of the ecosystem. Here we consider how successional theory can help to simplify our understanding of marine community structure, especially when viewed in context of human disturbance. During succession, the emergent properties of communities change in predictable ways. As communities mature, there is an increase in total production and biomass, the mean size of organisms, the level of internal recycling of food and nutrients, and the mean trophic level. Using a set of multi-species trophic models, we explore the changes in community structure that are likely to occur during succession. These changes include increases in biomass within trophic levels due to decreased rates of energy and food loss through trophic and production inefficiencies, and potential shifts from top-down control early in succession to bottom-up later. Because human activities disproportionately favor early-successional species, we can gain insights by considering community degradation in the context of succession being played in reverse. Indicators of health based on ecological succession thus provide a mechanistic view to measure the impact of human activities (both positive and negative) on marine ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams PA (1993) Why predation rate should not be proportional to predator density. Ecology 74:726–733

    Article  Google Scholar 

  • Anderson CNK et al (2008) Why fishing magnified fluctuations in fish abundance. Nature 452:835–839

    Article  PubMed  CAS  Google Scholar 

  • Arkema KK, Abramson SC, Dewsbury BM (2006) Marine ecosystem-based management: from characterization to implementation. Front Ecol Environ 4:525–532

    Article  Google Scholar 

  • Aronson RB, Precht WF (1997) Stasis, biological disturbance, and community structure of a Holocene coral reef. Paleobiology 23:326–346

    Google Scholar 

  • Bascompte J, Melian CJ, Sala E (2005) Interaction strength combinations and the overfishing of a marine food web. Proc Natl Acad Sci USA 102:5443–5447

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Calder WA (1984) Size, function, and life history. Harvard University Press, Cambridge

    Google Scholar 

  • Christensen V (1995) Ecosystem maturity—towards quantification. Ecol Model 77:3–32

    Article  Google Scholar 

  • Connolly SR, Roughgarden J (1999) Theory of marine communities: competition, predation, and recruitment-dependent interaction strength. Ecol Monogr 69:277–296

    Article  Google Scholar 

  • Crossman DJ, Choat JH, Clements KD, Hardy T, McConochie J (2001) Detritus as food for grazing fishes on coral reefs. Limnol Oceanogr 46:1596–1605

    Article  Google Scholar 

  • Dayton PK (1985) Ecology of kelp communities. Ann Rev Ecol Syst 16:215–245

    Article  Google Scholar 

  • Dayton PK, Tegner MJ, Edwards PB, Riser KL (1998) Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecol Appl 8:309–322

    Article  Google Scholar 

  • DeMartini EE, Friedlander AM, Sandin SA, Sala E (2008) Differences in fish-assemblage structure between fished and unfished atolls in the northern Line Islands, central Pacific. Mar Ecol Prog Ser 365:190–215

    Article  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  PubMed  CAS  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean Acidification: the other CO2 problem. Ann Rev Marine Sci 1:169–192

    Article  Google Scholar 

  • Duffy JE (2002) Biodiversity and ecosystem function: the consumer connection. Oikos 99:201–219

    Article  Google Scholar 

  • Estes JA et al (2011) Trophic downgrading of Planet Earth. Science 333:301–306

    Article  PubMed  CAS  Google Scholar 

  • Fänge R, Grove D (1979) Digestion. In: Hoar WS, Randall DJ, Brett JR (eds) Fish Physiology, vol VII. Energetics and Growth. Academic Press, New York, pp 161–260

    Google Scholar 

  • Frankenberg D, Smith KL Jr (1967) Coprophagy in marine animals. Limnol Oceanogr 12:443–450

    Article  Google Scholar 

  • Friedlander AM, DeMartini EE (2002) Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: the effects of fishing down apex predators. Marine Ecol-Progr Ser 230:253–264

    Article  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  PubMed  CAS  Google Scholar 

  • Grigg RW (1983) Community structure, succession and development of coral reefs in Hawaii. Mar Ecol Prog Ser 11:1–14

    Article  Google Scholar 

  • Grigg RW, Maragos JE (1974) Recolonization of hermatypic corals on submerged lava flows in Hawaii. Ecology 55:387–395

    Article  Google Scholar 

  • Hamilton SL, Caselle JE, Malone DP, Carr MH (2010) Incorporating biogeography into evaluations of the Channel Island marine reserve network. Proc Nat Acad Sci 107:18272–18277

    Article  PubMed  CAS  Google Scholar 

  • Hay ME (1997) The ecology and evolution of seaweed-herbivore interactions on coral reefs. Coral Reefs 16:S67–S76

    Article  Google Scholar 

  • Hay ME, Fenical W (1988) Marine plant-herbivore interactions: the ecology of chemical defense. Ann Rev Ecol Syst 19:111–145

    Article  Google Scholar 

  • Helfman GS, Collette BB, Facey DE (1997) The diversity of fishes. Blackwell, Malden

    Google Scholar 

  • Holling CS (1959) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can Entomol 91:293–320

    Article  Google Scholar 

  • Jackson JBC (1997) Reefs since Columbus. Coral Reefs 16:S23–S32

    Article  Google Scholar 

  • Jackson JBC (2001) What was natural in the coastal oceans? Proc Nat Acad Sci 98:5411–5418

    Article  PubMed  CAS  Google Scholar 

  • Jackson JBC, Sala E (2001) Unnatural oceans. Sci Marina 65:273–281

    Google Scholar 

  • Jackson JBC et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638

    Article  PubMed  CAS  Google Scholar 

  • Kaufman L, Sandin S, Sala E, Obura D, Rohwer F, Tschirky J (2011) Coral health index (CHI): measuring coral community health. Science and Knowledge Division, Conservation International, Arlington, VA, USA

  • Knowlton N, Jackson JBC (2008) Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol 6:e54

    Article  PubMed  Google Scholar 

  • Larkum AWD, Orth RJ, Duarte CM (2006) Seagrasses: biology, ecology and conservation. Springer, Dordrecht

    Google Scholar 

  • Leopold A (1949) A Sand County almanac. Oxford University Press, Oxford

    Google Scholar 

  • Link JS (2002) Ecological considerations in fisheries management: when does it matter? Fisheries 27:10–17

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Margalef R (1968) Perspectives in ecological theory. University of Chicago Press, Chicago

    Google Scholar 

  • Margalef R (1997) Our Biosphere. Inter-Research, Oldendorf/Luhe

    Google Scholar 

  • May RM (1974) Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186:645–647

    Article  PubMed  CAS  Google Scholar 

  • Menge BA (1995) Indirect effects in marine rocky intertidal interaction webs: patterns and importance. Ecol Monogr 65:21–74

    Article  Google Scholar 

  • Monaco ME, Ulanowicz RE (1997) Comparative ecosystem trophic structure of three U.S. mid-Atlantic estuaries. Mar Ecol Prog Ser 161:239–254

    Article  Google Scholar 

  • National Research Council (2006) Dynamic changes in marine ecosystems: fishing, food webs, and future options. In: Fishing CoEEo (ed) Phase II—Assessments of the extent of change and the implications for policy, Washington, p 160

  • Newman MJH, Paredes GA, Sala E, Jackson JBC (2006) Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol Lett 9:1216–1227

    Article  PubMed  Google Scholar 

  • Odum EP (1969) Strategy of ecosystem development. Science 164:262–270

    Article  PubMed  CAS  Google Scholar 

  • Oksanen L, Fretwell SD, Arruda J, Niemela P (1981) Exploitation ecosystems in gradients of primary production. Am Nat 118:240–261

    Article  Google Scholar 

  • Paine RT (1980) Food web linkage, interactions strength and community infrastructure. J Anim Ecol 49:667–685

    Article  Google Scholar 

  • Pandolfi JM (1996) Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: constancy during global change. Paleobiology 22:152–176

    Google Scholar 

  • Pandolfi JM, Jackson JBC (2001) Community structure of Pleistocene coral reefs of Curaçao, Netherlands Antilles. Ecol Monogr 71:49–67

    Google Scholar 

  • Pandolfi JM et al (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  PubMed  CAS  Google Scholar 

  • Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature 374:255–257

    Article  CAS  Google Scholar 

  • Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F Jr (1998) Fishing down marine food webs. Science 279:860–863

    Article  PubMed  CAS  Google Scholar 

  • Pérez-España H, Arreguín-Sánchez F (1999) A measure of ecosystem maturity. Ecol Model 119:79–85

    Article  Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Google Scholar 

  • Pikitch EK et al (2004) Ecosystem-based fishery management. Science 305:346–347

    Article  PubMed  CAS  Google Scholar 

  • Polis GA, Sears ALW, Huxel GR, Strong DR, Maron J (2000) When is a trophic cascade a trophic cascade? Trends Ecol Evol 15:473–475

    Article  PubMed  Google Scholar 

  • Randall JE (1967) Food habits of reef fishes of the West Indies. Stud Trop Oceanogr 5:665–847

    Google Scholar 

  • Rassweiler A, Rassweiler T (2011) Does rapid scavenging hide non-predation mortality in coral-reef communities? Mar Freshwater Res 62:510–515

    Google Scholar 

  • Roberts CM (1995) Effects of fishing on the ecosystem structure of coral reefs. Conserv Biol 9:988–995

    Article  Google Scholar 

  • Robertson DR (1982) Fish feces as fish food on a Pacific coral-reef. Mar Ecol Prog Ser 7:253–265

    Article  Google Scholar 

  • Rochet M-J, Trenkel VM (2003) Which community indicators can measure the impact of fishing? A review and proposals. Can J Fish Aquat Sci 60:86–99

    Article  Google Scholar 

  • Rogers SI, Greenwaway B (2005) A UK perspective on the development of marine ecosystem indicators. Mar Pollut Bull 50:9–19

    Article  PubMed  CAS  Google Scholar 

  • Sala E (2006) Top predators provide insurance against climate change. Trends Ecol Evol 21:479–480

    Article  PubMed  Google Scholar 

  • Sala E, Sugihara G (2005) Food web theory provides guidelines for marine conservation. In: Belgrano A, Scharler UM, Dunne J, Ulanowicz RE (eds) Aquatic food webs: an ecosystem approach. Oxford University Press, Oxford, pp 170–183

    Google Scholar 

  • Sale PF (ed) (1991) The ecology of fishes on coral reefs. Academic Press, San Diego

    Google Scholar 

  • Sandin SA, Pacala SW (2000) Regulation in populations of coral reef fish: an exploration of models and data. In: Ninth International Coral Reef Symposium, vol 1. Bali, Indonesia, pp 455–462

    Google Scholar 

  • Sandin SA, Pacala SW (2005) Demographic theory of coral reef fish populations with stochastic recruitment: comparing sources of population regulation. Am Nat 165:107–119

    Article  PubMed  Google Scholar 

  • Sandin SA et al (2008) Baselines and degradation of coral reefs in the northern Line Islands. PLoS ONE 3:e1548

    Article  PubMed  Google Scholar 

  • Sandin SA, Walsh SM, Jackson JBC (2010) Prey release, trophic cascades, and phase shifts in tropical nearshore marine ecosystems. In: Terborgh J, Estes JA (eds) Trophic cascades: predators, prey, and the changing dynamics of nature. Island Press, Washington, pp 71–90

    Google Scholar 

  • Sazima I, Sazima C, Martins Silva-Jr J (2003) The cetacean offal connections: feces and vomits of spinner dolphins as a food source for reef fishes. Bull Mar Sci 72:151–160

    Google Scholar 

  • Scharf FS, Juanes F, Rountree RA (2000) Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar Ecol Prog Ser 208:229–248

    Article  Google Scholar 

  • Schmidt-Nielsen K (1984) Why is animal size so important. Cambridge University Press, Cambridge

    Google Scholar 

  • Simberloff D (1998) Flagships, umbrellas, and keystones: is single-species management passé in the landscape era? Biol Conserv 83:247–257

    Article  Google Scholar 

  • Terborgh J, Estes JA (eds) (2010) Trophic cascades: predators, prey, and the changing dynamics of nature. Island Press, Washington

    Google Scholar 

  • Trenkel VM, Rochet M-J (2003) Performance of indicators derived from abundance estimates for detecting the impact of fishing on a fish community. Can J Fish Aquat Sci 60:67–85

    Article  Google Scholar 

  • U.S.D.A. Forest Service (1995) The Forest Service program for forest and rangeland resources: a long-term strategic plan. Draft 1995 RPA program. In, Washington

  • van Rooij JM, Bruggemann JH, Videler JJ, Breeman AM (1995) Plastic growth of the herbivorous reef fish Sparisoma viride: field evidence for a trade-off between growth and reproduction. Mar Ecol Prog Ser 122:93–105

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  PubMed  CAS  Google Scholar 

  • Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Ann Rev Ecol Syst 38:327–359

    Article  Google Scholar 

  • Williams ID et al (2011) Differences in reef fish assemblages between populated and remote reefs spanning multiple archipelagos across the central and western Pacific. J Marine Biol 2011:1–14

    Article  Google Scholar 

  • Wilson S, Bellwood DR (1997) Cryptic dietary components of territorial damselfishes (Pomacentridae, Labroidei). Mar Ecol Prog Ser 153:299–310

    Article  CAS  Google Scholar 

  • Yodzis P, Innes S (1992) Body size and consumer-resource dynamics. Am Nat 139:1151–1175

    Article  Google Scholar 

  • Zacharias MA, Roff JC (2001) Use of focal species in marine conservation and management: a review and critique. Aqua Conserv: Marine Freshw Ecosyst 11:59–76

    Article  Google Scholar 

Download references

Acknowledgments

The insights and creativity of J.B.C. Jackson provided the inspiration for this work. We thank F. Ballantyne IV, J.E. Smith, G.J. Williams, S.R. Connolly, and one anonymous reviewer for significant input and comments on earlier versions of this manuscript. Support for SAS was provided by an endowment from Ed Scripps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart A. Sandin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandin, S.A., Sala, E. Using successional theory to measure marine ecosystem health. Evol Ecol 26, 435–448 (2012). https://doi.org/10.1007/s10682-011-9533-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-011-9533-3

Keywords

Navigation