Skip to main content
Log in

Adult body size = f (initial size + growth rate × age): explaining the proximate cause of Bergman’s cline in a toad along altitudinal gradients

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Animals that exhibit indeterminate growth obey such a functional relationship: adult body size = f (initial size + growth rate × age). Using this framework, we investigated how and why body sizes of a toad species (Bufo andrewsi) covaried across six altitudes (760–2,100 m) in western China. Towards high altitudes, toads tended to produce large eggs, attain large sizes at metamorphism and have great average age, but grow slowly. This indicated that the former three variables contributed more to the observed altitudinal increase in body size than did the last one. The altitudinal variation in these life-history traits should be adaptive to increased climate harshness and decreased predation risks at higher altitudes. We suggest that the relative significance of responses of these size-related parameters to local environments may provide critical cues to explaining considerable variability in geographic size pattern among ectothermic vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams DC, Church JO (2008) Amphibians do not follow Bergmann’s rule. Evolution 62:413–420

    Article  PubMed  Google Scholar 

  • Altwegg R, Reyer HU (2003) Patterns of natural selection on size at metamorphosis in water frogs. Evolution 57:872–882

    PubMed  Google Scholar 

  • Angilletta MJ, Steury TD, Sears MW (2004) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 44:498–509

    Article  PubMed  Google Scholar 

  • Ashton KG (2002) Do amphibians follow Bergmann’s rule? Can J Zool 80:708–716

    Article  Google Scholar 

  • Ashton KG, Feldman CR (2003) Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57:1151–1163

    PubMed  Google Scholar 

  • Atkinson D (1994) Temperature and organism size—a biological law for ectotherms? Adv Ecol Res 25:1–58

    Article  Google Scholar 

  • Atkinson D, Sibly RM (1997) Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol Evol 12:235–239

    Article  PubMed  CAS  Google Scholar 

  • Beck E, Kottke I, Bendix J, Makeschin F, Mosandl R (2008) Gradients in a tropical mountain ecosystem—a synthesis. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds). Gradients in a tropical mountain ecosystem of Ecuador. Ecol Stu 198: 451–463

  • Bergmann C (1847) Über die verhältnisse der warmeökonomie der thiere zuihrer grosse. Gottinger Studien 1:595–708

    Google Scholar 

  • Berven KA, Gill DE, Smith-Gill SJ (1979) Countergradient selection in the green frog, Rana clamitans. Evolution 33:609–623

    Article  Google Scholar 

  • Brown HA (1990) Morphological variation and age-class determination in overwintering tadpoles of the tailed frog, Ascaphus truei. J Zool Lond 220:171–184

    Article  Google Scholar 

  • Chen XH, Yang J, Qiao L, Zhang LX, Lu X (2011) Reproductive ecology of the stream-dwelling frog Feirana taihangnicus in central China. Herpetol J 21:135–140

    CAS  Google Scholar 

  • Cummins CP (1986) Temporal and spatial variation in egg size and fecundity in Rana temporaria. J Anim Ecol 55:303–316

    Article  Google Scholar 

  • Cvetković D, Tomašević N, Ficetola GF, Crnobrnja-Isailović J, Miaud C (2009) Bergmann’s rule in amphibians: combining demographic and ecological parameters to explain body size variation among populations in the common toad Bufo bufo. J Zool Syst Evol Res 47:171–180

    Article  Google Scholar 

  • Dziminski MA, Vercoe PE, Roberts JD (2009) Variable offspring provisioning and fitness: a direct test in the field. Funct Ecol 23:164–171

    Article  Google Scholar 

  • Eaton BR, Paszkowski CA, Kristensen K, Hiltz M (2005) Life-history variation among populations of Canadian toads in Alberta, Canada. Can J Zool 83:1421–1430

    Article  Google Scholar 

  • Ficetola GF, Scali S, Denoël M, Montanaro G, Vukov TD, Zuffi MAL, Padoa-Schioppa E (2010) Ecogeographical variation of body size in amphibians: comparing the hypotheses using the newt Triturus carnifex. Global Ecol Biogeogr 19:485–495

    Google Scholar 

  • Gillespie GR (2011) Life history variation in the spotted tree frog, Litoria spenceri (Anura: Hylidae), from southeastern Australia. Herpetologica 67:10–22

    Article  Google Scholar 

  • Haddon M (2001) Modelling and quantitative methods in fisheries. Chapman and Hall, Florida

    Google Scholar 

  • Kaplan RH, King EG (1997) Egg size is a developmentally plastic trait: evidence from long-term studies in the frog Bombina orientalis. Herpetologica 53:149–165

    Google Scholar 

  • Kozłowski J, Czarnołeski M, Dańko M (2004) Can optimal resource allocation models explain why ectotherms grow larger in cold? Integr Comp Biol 44:480–493

    Article  PubMed  Google Scholar 

  • Lai YC, Lee TH, Kam YC (2005) A skeletochronological study on a subtropical, riparian ranid (Rana swinhoana) from different elevations in Taiwan. Zool Sci 22:653–658

    Article  PubMed  Google Scholar 

  • Laugen AT, Laurila A, Räsänen K, Merilä J (2003) Latitudinal countergradient variation in the common frog ( Rana temporaria) developmental rates–evidence for local adaptation. J Evol Biol 16:996–1005

    Article  PubMed  CAS  Google Scholar 

  • Laugen AT, Laurila A, Jönsson KI, Söderman F, Merilä J (2005) Do common frogs (Rana temporaria) follow Bergmann’s rule? Evol Ecol Res 7:717–731

    Google Scholar 

  • Laurila A, Pakkasmaa S, Merilä J (2001) Influence of seasonal time constraints on growth and development of common frog tadpoles: a photoperiod experiment. Oikos 95:451–460

    Article  Google Scholar 

  • Leclair R Jr, Laurin G (1996) Growth and body size in two populations of mink frogs Rana serpentrionalis from two latitudes. Ecography 19:296–304

    Google Scholar 

  • Lessard JP, Sackett TE, Reynolds WN, Fowler DA, Sanders NJ (2010) Determinants of the detrital arthropod community structure: the effects of temperature, resources, and environmental gradients. Oikos 120:333–343

    Article  Google Scholar 

  • Liao WB, Lu X (2009) Male mate choice in the Andrew’s toad Bufo andrewsi: a preference for larger females. J Ethol 27:413–417

    Article  Google Scholar 

  • Liao WB, Lu X (2010a) A skeletochronological estimation of age and body size by the Sichuan torrent frog (Amolops mantzorum) between two populations at different altitudes. Anim Biol 60:479–489

    Article  Google Scholar 

  • Liao WB, Lu X (2010b) Age structure and body size of the Chuanxi tree frog Hyla annectans chuanxiensis from two different elevations in Sichuan (China). Zool Anz 248:255–263

    Article  Google Scholar 

  • Liao WB, Zhou CQ, Yang ZS, Hu JC, Lu X (2010) Age, size and growth in two populations of the dark-spotted frog Rana nigromaculata at different altitudes in southwestern China. Herpetol J 20:77–82

    Google Scholar 

  • Lu X, Li B, Liang JJ (2006) Comparative demography of a temperate anuran, Rana chensinensis, along a relatively fine altitudinal gradient. Can J Zool 84:1789–1795

    Article  Google Scholar 

  • Ma XY, Lu X (2009) Sexual size dimorphism in relation to age and growth based on skeletochronological analysis in a Tibetan frog. Amphibia-Reptilia 30:351–359

    Article  Google Scholar 

  • Ma XY, Lu X, Merilä J (2009a) Altitudinal decline of body size in a Tibetan frog Nanorana parkeri. J Zool Lond 279:364–371

    Article  Google Scholar 

  • Ma XY, Tong LN, Lu X (2009b) Variation of body size, age structure and growth of a temperate frog, Rana chensinensis, over an altitudinal gradient in northern China. Amphibia-Reptilia 30:111–117

    Article  Google Scholar 

  • Marangoni F, Tejedo M (2008) Variation in body size and metamorphic traits of Iberian spadefoot toads over a short geographic distance. J Zool Lond 275:97–105

    Article  Google Scholar 

  • Matthews KR, Miaud C (2007) A skeletochronological study of the age structure, growth, and longevity of the mountain yellow-legged frog, Rana muscosa, in the Sierra Nevada, California. Copeia 2007:986–993

    Article  Google Scholar 

  • Merilä J, Laurila A, Laugen AT, Räsänen K, Pahkala M (2000) Plasticity in age and size at metamorphosis in Rana temporaria–comparison of high and low latitude populations. Ecography 23:457–465

    Article  Google Scholar 

  • Morrison C, Hero JM (2003) Geographic variation in life-history characteristics of Amphibians: a review. J Anim Ecol 72:270–279

    Article  Google Scholar 

  • Morrison C, Hero JM, Browning J (2004) Altitudinal variation in the age at maturity, longevity, and reproductive lifespan of anurans in subtropical Queensland. Herpetologica 60:34–44

    Article  Google Scholar 

  • Olalla-Tárraga MA, Rodríguez MA (2007) Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann’s rule, urodeles its converse. Global Ecol Biogeogr 16:606–617

    Article  Google Scholar 

  • Palo JU, O’Hara RB, Laugen AT, Laurila A, Primmer CR, Merila J (2003) Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: evidence from a comparison of molecular and quantitative genetic data. Mol Ecol 12:1963–1978

    Article  PubMed  CAS  Google Scholar 

  • Pincheira-Donoso D, Hodgson DJ, Tregenza T (2008) The evolution of body size under environmental gradients in ectotherms: why should Bergmann’s rule apply to lizards? BMC Evol Biol 8:68

    Article  PubMed  Google Scholar 

  • Roff DA (2002) Life history evolution. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Rozenblut B, Ogielska M (2005) Development and growth of long bones in European water frogs (Amphibia: Anura: Ranidae), with remarks on age determination. J Morphol 265:304–317

    Article  PubMed  Google Scholar 

  • Ryser J (1996) Comparative life histories of a low- and a high-elevation population of the common frog Rana temporaria. Amphibia-Reptilia 17:183–195

    Article  Google Scholar 

  • Sagor ES, Ouellet M, Barten E (1998) Sleletochronology and geographic variation in age structure in the wood frog, Rana sylvatica. J Herpetol 32:469–474

    Article  Google Scholar 

  • Sinsch U, Marangoni F, Oromí N, Leskovar C, Sanuy D, Tejedo M (2010) Proximate mechanisms determining size variability in natterjack toads. J Zool Lond 281:272–281

    Google Scholar 

  • Turbill C, Bieber C, Ruf T (2011) Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc Roy Soc Lond B (in press)

  • von Bertalanffy L (1938) A quantitative theory of organic growth. Hum Biol 10:181–213

    Google Scholar 

  • Wallace RL, Diller LV (1998) Length of the larval cycle of Ascaphus truei in coastal streams of the redwood region, northern California. J Herpetol 32:404–409

    Article  Google Scholar 

  • Wells KD (1977) The social behaviour of anuran amphibians. Anim Behav 25:666–693

    Article  Google Scholar 

  • Wells KD (2007) The ecology and behavior of amphibians. University of Chicago Press, Chicago

    Google Scholar 

  • Williams PD, Day T, Fletcher Q, Rowe L (2006) The shaping of senescence in the wild. Trends Ecol Evol 21:458–463

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank B.Q. Yang, X.Z. Jing and T.L. Yu for assistance during the field work. We are thankful for Dr. L. X. Zhang and two anonymous referees for their comments on the manuscript. Financial support of this study is provided by National Sciences Foundation of China (30425036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, W., Lu, X. Adult body size = f (initial size + growth rate × age): explaining the proximate cause of Bergman’s cline in a toad along altitudinal gradients. Evol Ecol 26, 579–590 (2012). https://doi.org/10.1007/s10682-011-9501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-011-9501-y

Keywords

Navigation