Skip to main content
Log in

Ecology and mating competition influence sexual dimorphism in Tanganyikan cichlids

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Sexual selection contributes strongly to the evolution of sexual dimorphism among animal taxa. However, recent comparative analyses have shown that evolution of sexual dimorphism can be influenced by extrinsic factors like mating system and environment, and also that different types of sexual dimorphism may present distinct evolutionary pathways. Investigating the co-variation among different types of sexual dimorphism and their association with environmental factors can therefore provide important information about the mechanisms generating variation in sexual dimorphism among contemporary species. Using phylogenetic comparative analyses comparing 49 species of Tanganyikan cichlid fishes, we first investigated the pairwise relationship between three types of sexual dimorphism [size dimorphism (SSD), colour dimorphism (COD) and shape dimorphism (SHD)] and how they were related to the strength of pre- and post-copulatory sexual selection. We then investigated the influence of ecological features on sexual dimorphism. Our results showed that although SSD was associated with the overall strength of sexual selection it was not related to other types of sexual dimorphism. Also, SSD co-varied with female size and spawning habitat, suggesting a role for female adaptations to spawn in small crevices and shells influencing SSD in this group. Further, COD and SHD were positively associated and both show positive relationships with the strength of sexual selection. Finally, the level of COD and SHD was related to habitat complexity. Our results thus highlight distinct evolutionary pathways for different types of sexual dimorphism and further that ecological factors have influenced the evolution of sexual dimorphism in Tanganyikan cichlid fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abouheif E, Fairbairn DJ (1997) A comparative analysis of allometry for sexual size dimorphism: assessing Rensch’s rule. Am Nat 149:540–562

    Article  Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Badyaev AV (1997) Altitudinal variation in sexual dimorphism: a new pattern and alternative hypotheses. Behav Ecol 8:675–690

    Article  Google Scholar 

  • Badyaev AV, Hill GE (2003) Avian sexual dichromatism in relation to phylogeny and ecology. Annu Rev Ecol Evol Syst 34:27–49

    Article  Google Scholar 

  • Barlow GW (2000) Cichlid fishes. Nature’s grand experiment in evolution. Perseus Books, Cambridge

    Google Scholar 

  • Berglund A, Rosenquist G, Svensson I (1986) Mate choice, fecundity and sexual dimorphism in two pipefish species (Syngnathidae). Behav Ecol Sociobiol 19:301–307

    Article  Google Scholar 

  • Blanckenhorn WU (2000) The evolution of body size: what keeps organisms small? Q Rev Biol 75:385–407

    Article  PubMed  CAS  Google Scholar 

  • Blanckenhorn WU (2005) Behavioral causes and consequences of sexual size dimorphism. Ethology 111:977–1016

    Article  Google Scholar 

  • Carleton K (2009) Cichlid fish visual systems: mechanisms of spectral tuning. Int Zool 4:75–86

    Article  Google Scholar 

  • Cuervo JJ, Møller AP (1999) Ecology and evolution of extravagant feather ornaments. J Evol Biol 12:986–998

    Article  Google Scholar 

  • Darwin C (1871) The descent of man and selection in relation to sex. John Murray, London

    Book  Google Scholar 

  • Dobberfuhl AP, Ullmann JFP, Shumway CA (2005) Visual acuity, environmental complexity, and social organization in African cichlid fishes. Behav Neurosci 119:1648–1655

    Article  PubMed  Google Scholar 

  • Doucet SM, Mennill DJ (2009) Dynamic sexual dichromatism in an explosively breeding Neotropical toad. Biol Lett 6:63–66

    Article  PubMed  Google Scholar 

  • Dunn PO, Whittingham LA, Pitcher TE (2001) Mating system, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55:161–175

    PubMed  CAS  Google Scholar 

  • Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139:S125–S153

    Article  Google Scholar 

  • Endler JA (1993) Some general comments on the evolution and design of animal communication systems. Phil Trans R Soc Lond B 340:215–225

    Article  CAS  Google Scholar 

  • Endler JA (2000) Evolutionary implications of the interaction between animal signals and the environment. In: Espmark Y, Amundsen T, Rosenqvist G (eds) Animal signals. Tapir Academic Press, Trondheim, pp 11–46

    Google Scholar 

  • Endler JA, Théry M (1996) Interacting effects of lek placement, display behavior, ambient light, and colour patterns in three Neotropical forest-dwelling birds. Am Nat 148:421–452

    Article  Google Scholar 

  • Fairbairn DJ (2007) The enigma of sexual size dimorphism. In: Blackenhorn W, Fairbairn D, Szekely T (eds) Sex, size and gender roles. Oxford University Press, Oxford, pp 27–37

    Chapter  Google Scholar 

  • Fairbairn DJ, Blanckenhorn WU, Székely T (eds) (2007) Sex, size and gender roles: evolutionary studies of sexual size dimorphism. Oxford University Press, New York

    Google Scholar 

  • Figuerola J, Green AJ (2000) The evolution of sexual dimorphism in relation to mating patterns, cavity nesting, insularity and sympatry in the Anseriformes. Funct Ecol 14:701–710

    Article  Google Scholar 

  • Fitzpatrick JL, Montgomerie RM, Desjardins JK, Stiver KA, Kolm N, Balshine S (2009) Female promiscuity promotes the evolution of faster sperm in cichlid fishes. Proc Natl Acad Sci USA 106:1128–1132

    Article  PubMed  CAS  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  PubMed  CAS  Google Scholar 

  • Froese R, Pauly D (2010) FishBase. World Wide Web electronic publication. www.fishbase.org, version (11/2010)

  • Gonzalez-Voyer A, Kolm N (2010) Sex, ecology and the brain: evolutionary correlates of brain structure volumes in Tanganyikan cichlids. PLoS ONE 5(12):e14355

    Google Scholar 

  • Gonzalez-Voyer A, Fitzpatrick JL, Kolm N (2008) Sexual selection determines parental care patterns in cichlid fishes. Evolution 62:2015–2026

    Article  PubMed  Google Scholar 

  • Gonzalez-Voyer A, Winberg S, Kolm N (2009) Social fishes and single mothers: brain evolution in African cichlids. Proc R Soc Lond B 276:161–167

    Article  Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Phil Trans R Soc Lond B 326:119–157

    Article  CAS  Google Scholar 

  • Hert E (1989) The function of egg-spots in an African mouth-brooding cichlid fish. Anim Behav 37:726–732

    Article  Google Scholar 

  • Höglund J (1989) Size and plumage dimorphism in lek-breeding birds: a comparative analysis. Am Nat 134:72–87

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Jackson D (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New-York

    Google Scholar 

  • Kawanabe H, Hori M, Nagoshi M (1997) Fish communities in Lake Tanganyika. Kyoto University Press, Kyoto

  • Koblmüller S, Sefc KM, Sturmbauer C (2008) The lake Tanganyika cichlid species assemblage: recent advances in molecular phylogenetics. Fourth symposium on speciation in Ancient Lakes, Berlin, Germany, Hydrobiologia

  • Kohda M (1991) Intra- and interspecific social organization among three herbivorous cichlid fishes in Lake Tanganyika. Japan J Ichtyol 38:147–163

    Google Scholar 

  • Kohda M (1995) Territoriality of male cichlid fishes in Lake Tanganyika. Ecol Freshw Fish 4:180–184

    Article  Google Scholar 

  • Kohda M (1997) Interspecific society among herbivorous cichlid fishes. In: Kawanabe H, Hori M, Nagoshi M (eds) Fish communities in Lake Tanganyika. Kyoto University Press, Kyoto, pp 105–117

    Google Scholar 

  • Kohda M (1998) Coexistence of permanently territorial cichlids of the genus Petrochromis through male-mating attack. Env Biol Fish 52:231–242

    Article  Google Scholar 

  • Konings A (1988) Tanganyika cichlids. Verdujin Cichlids, Zevenhuizen

    Google Scholar 

  • Konings A (2005) Back to nature guide to Tanganyika cichlids, 2nd edn. Cichlid Press, St. Leon-Rot

    Google Scholar 

  • Kuwamura T (1986) Parental care and mating systems of cichlid fishes in Lake Tanganyika: a preliminary field survey. J Ethol 4:129–146

    Article  Google Scholar 

  • Lovich JE, Gibbons JW (1992) A review of techniques for quantifying sexual size dimorphism. Growth Dev Aging 56:269–281

    PubMed  CAS  Google Scholar 

  • Maddison WP, Maddison DR (2007) Mesquite: a modular system for evolutionary analysis. Version 2.7. http://mesquiteproject.org

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667

    Article  Google Scholar 

  • McNaught MK, Owens IPF (2002) Interspecific variation in plumage colour among birds: species recognition or light environment? J Evol Biol 15:505–514

    Article  Google Scholar 

  • Møller AP, Birkhead TR (1994) The evolution of plumage brightness in birds is related to extrapair paternity. Evolution 48:1089–1100

    Article  Google Scholar 

  • Mrowka W (1987) Oral fertilization in a mouth-brooding cichlid fish. Ethology 74:293–296

    Article  Google Scholar 

  • Nelissen MHJ (1992) Does body size affect the rank of a cichlid fish in a dominance hierarchy? J Ethol 10:153–156

    Article  Google Scholar 

  • O′Quin KE, Hofmann CM, Hofmann HA, Carleton KL (2010) Parallel evolution of opsin gene expression in African Cichlid fishes. Mol Biol Evol 27:2839–2854

    Article  PubMed  Google Scholar 

  • Ochi H (1993) Mate monopolization by a dominant male in a multi-male social group of a mouthbrooding cichlid, Ctenochromis horei. Japan J Ichtyol 40:209–218

    Google Scholar 

  • Owens IPF, Hartley IR (1998) Sexual dimorphism in birds: why are there so many different forms of dimorphism? Proc R Soc Lond B 265:397–407

    Article  Google Scholar 

  • Pagel MD (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc Lond B 255:37–45

    Article  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Promislow D, Montgomerie R, Martin TE (1994) Sexual selection and survival in North-American waterfowl. Evolution 48:2045–2050

    Article  Google Scholar 

  • R Core Development Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rensch B (1950) Die abhangigkeit der relativen sexualdifferenz von der Körpergroße. Bonner Zool Beiträge 1:58–69

    Google Scholar 

  • Revell LJ (2009) Size-correction and principal components for interspecific comparative studies. Evolution 63:3258–3268

    Article  PubMed  Google Scholar 

  • Rohlf FJ (2001) Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55:2143–2160

    PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylognetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rossiter A, Yamagishi S (1997) Intraspecific plasticity in the social system and mating behaviour of a lek-breeding cichlid fish. In: Kawanabe H, Hori M, Nagoshi M (eds) Fish communities in Lake Tanganyika. Kyoto University Press, Kyoto, pp 193–217

    Google Scholar 

  • Sato T, Gashagaza MM (1997) Shell-brooding cichlid fishes of Lake Tanganyika: their habitats and mating systems. Kyoto University Press, Kyoto

    Google Scholar 

  • Schütz D, Taborsky M (2000) Giant males or dwarf females: what determines the extreme sexual size dimorphism in Lamprologus callipterus? J Fish Biol 57:1254–1265

    Google Scholar 

  • Schütz D, Parker GA, Taborsky M, Sato T (2006) An optimality approach to male and female body sizes in an extremely size-dimorphic cichlid fish. Evol Ecol Res 8:1–16

    Google Scholar 

  • Seddon N, Tobias JA, Eaton M, Ödeen A, Byers BE (2010) Human vision can provide a valid proxy for avian perception of sexual dichromatism. Auk 127:283–292

    Article  Google Scholar 

  • Seehausen O, Mayhew PJ, Van Alphen JJM (1999) Evolution of colour patterns in East African cichlid fish. J Evol Biol 12:514–534

    Google Scholar 

  • Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, Imai H, Okada N (2008) Speciation through sensory drive in cichlid fish. Nature 455:620–626

    Article  PubMed  CAS  Google Scholar 

  • Shine R (1989) Ecological causes for the evolution of sexual size dimorphism: a review of the evidence. Q Rev Biol 64:419–461

    Article  PubMed  CAS  Google Scholar 

  • Stuart-Fox DM, Ord TJ (2004) Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proc R Soc Lond B 271:2249–2255

    Article  Google Scholar 

  • Wickler W (1962) ‘Egg-dummies’ as natural releasers in mouth-breeding cichlids. Nature 194:1092–1094

    Article  Google Scholar 

  • Wilgenbusch JC, Warren DL, Swofford DL (2004) AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference http://ceb.csit.fsu.edu/awty

  • Yanagisawa Y, Ochi H, Gashagaza MM (1997) Habitat use in cichlid fishes for breeding. In: Kawanabe H, Hori M, Nagoshi M (eds) Fish communities in Lake Tanganyika. Kyoto University Press, pp 151–173

Download references

Acknowledgments

This study was funded by grants from the Swedish Research Council (VR) and the Wenner-Grens Foundations to Niclas Kolm. A. Gonzalez-Voyer was funded by a Wenner-Grens Foundations post-doctoral stipend and a Juan de la Cierva post-doctoral contract from the Spanish Ministry of Science and Innovation. We are especially grateful to Heinz Büscher, Ola Svensson, Carl Westholm and John Fitzpatrick for their help with scoring species for sexual dimorphism in colour and shape.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niclas Kolm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuboi, M., Gonzalez-Voyer, A., Höglund, J. et al. Ecology and mating competition influence sexual dimorphism in Tanganyikan cichlids. Evol Ecol 26, 171–185 (2012). https://doi.org/10.1007/s10682-011-9489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-011-9489-3

Keywords

Navigation