Skip to main content
Log in

The impact of infection on host competition and its relationship to parasite persistence in a Daphnia microparasite system

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Evolutionary studies often estimate fitness components with the aim to make predictions about the outcome of selection. Depending on the system and the question, different fitness components are used, but their usefulness for predicting the outcome of selection is rarely tested. Here we estimate host fitness components in different ways with the aim to test how well they agree with each other and how well they predict host fitness at the population level in the presence of the parasite. We use a Daphnia magna-microparasite system to study the competitive ability of host clones in the absence and presence of the parasite, the infection intensity of the parasite in individuals of twelve host clones (an estimate of both host resistance and parasite reproductive success), and parasite persistence in small host populations (an estimate of R 0 of the parasite). Analysis of host competitive ability and parasite persistence reveals strong host genotype effects, while none are found for infection intensity. Host competitive ability further shows a genotype-specific change upon infection, which is correlated with the relative persistence of the parasite in the competing hosts. Hosts in which the parasite persists better suffer a competitive disadvantage in the parasite’s presence. This suggests that in this system, parasite-mediated selection can be predicted by parasite persistence, but not by parasite infection intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson RM, May RM (1981) The population dynamics of microparasites and their invertebrate hosts. Phil Trans R Soc B 291:451–524

    Article  Google Scholar 

  • Anderson RM, May RM (1982) Coevolution of hosts and parasites. Parasitology 85:411–426

    Article  PubMed  Google Scholar 

  • Bull JJ (1994) Virulence. Evolution 48:1423–1437

    Article  Google Scholar 

  • Capaul M, Ebert D (2003) Parasite-mediated selection in experimental Daphnia magna populations. Evolution 57:249–260

    PubMed  Google Scholar 

  • Carius HJ, Little TJ, Ebert D (2001) Genetic variation in a host-parasite association: potential for coevolution and frequency-dependent selection. Evolution 55:1136–1145

    PubMed  CAS  Google Scholar 

  • Clarke BC (1979) Evolution of genetic diversity. Proc R Soc B 205:453–474

    Article  CAS  Google Scholar 

  • de Roode JC, Yates AJ, Altizer S (2008) Virulence-transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proc Natl Acad Sci USA 105:7489–7494

    Article  PubMed  Google Scholar 

  • Decaestecker E, Vergote A, Ebert D, Meester LD (2003) Evidence for strong host clone-parasite species interactions in the Daphnia microparasite system. Evolution 57:784–792

    PubMed  Google Scholar 

  • Decaestecker E, Declerck S, Meester LD, Ebert D (2005) Ecological implications of parasites in natural Daphnia populations. Oecologia 144:382–390

    Article  PubMed  Google Scholar 

  • Dieckmann U (ed) (2002) Adaptive dynamics of infectious disease. Cambridge University Press, Cambridge

    Google Scholar 

  • Duffy MA (2007) Selective predation, parasitism, and trophic cascades in a bluegill–Daphnia–parasite system. Oecologia 153:453–460

    Article  PubMed  Google Scholar 

  • Duffy MA, Sivars-Becker L (2007) Rapid evolution and ecological host-parasite dynamics. Ecol Lett 10:44–53

    Article  PubMed  Google Scholar 

  • Duncan AB, Mitchell SE, Little TJ (2006) Parasite-mediated selection and the role of sex and diapause in Daphnia. J Evol Biol 19:1183–1189

    Article  PubMed  CAS  Google Scholar 

  • Ebert D (2005) Ecology, epidemiology, and evolution of parasitism in Daphnia [Internet]. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda, MD. Available from http://www.ncbi.nlm.nih.gov/books/NBK2036. (Accessed Feb 2011)

  • Ebert D (2008) Host-parasite coevolution: insights from the Daphnia-parasite model system. Curr Opin Microbiol 11:290–301

    Article  PubMed  CAS  Google Scholar 

  • Ebert D, Bull JJ (2003) Challenging the trade-off model for the evolution of virulence: is virulence management feasible? Trends Microbiol 11:15–20

    Article  PubMed  CAS  Google Scholar 

  • Ebert D, Zschokke-Rohringer CD, Carius HJ (1998) Within- and between-population variation for resistance of Daphnia magna to the bacterial endoparasite Pasteuria ramosa. Proc R Soc B 265:2127–2134

    Article  Google Scholar 

  • Ebert D, Lipsitch M, Mangin KL (2000) The effect of parasites on host population density and extinction: experimental epidemiology with Daphnia and six microparasites. Am Nat 156:459–477

    Article  Google Scholar 

  • Ebert D, Haag C, Kirkpatrick M, Riek M, Hottinger J, Pajunen VI (2002) A selective advantage to immigrant genes in a Daphnia metapopulation. Science 295:485–488

    Article  PubMed  CAS  Google Scholar 

  • Fels D (2005) The effect of food on microparasite transmission in the waterflea Daphnia magna. Oikos 109:360–366

    Article  Google Scholar 

  • Fels D, Lee VA, Ebert D (2004) The impact of microparasites on the vertical distribution of Daphnia magna. Arch Hydrobiol 161:65–80

    Article  Google Scholar 

  • Frank SA (1996) Models of parasite virulence. Quart Rev Biol 71:37–78

    Article  PubMed  CAS  Google Scholar 

  • Grech K, Watt K, Read AF (2006) Host–parasite interactions for virulence and resistance in a malaria model system. J Evol Biol 19:1620–1630

    Article  PubMed  CAS  Google Scholar 

  • Green J (1974) Parasites and epibionts of Cladocera. Trans Zool Soc Lond 32:417–515

    Article  Google Scholar 

  • Haag CR, Ebert D (2004) Parasite-mediated selection in experimental metapopulations of Daphnia magna. Proc R Soc B 271:2149–2155

    Article  PubMed  Google Scholar 

  • Haag CR, Sakwinska O, Ebert D (2003) Test of synergistic interaction between infection and inbreeding in Daphnia magna. Evolution 57:777–783

    PubMed  Google Scholar 

  • Hamilton WD (1980) Sex versus non-sex versus parasite. Oikos 35:282–290

    Article  Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL (1987) A primer of population genetics. Sinauer, Sunderland

  • Hochberg ME (1998) Establishing genetic correlations involving parasite virulence. Evolution 52:1865–1868

    Article  Google Scholar 

  • Jensen KH, Little TJ, Skorping A, Ebert D (2006) Empirical support for optimal virulence in a castrating parasite. PLoS Biol 4:e197

    Article  PubMed  Google Scholar 

  • Jungen H, Hartl DL (1979) Average fitness of populations of Drospohila melanogaster as estimated using compound-autosome strains. Evolution 33:359–370

    Article  Google Scholar 

  • Larsson JIR, Ebert D, Vávra J, Voronin VN (1996) Redescription of Pleistophora intestinalis Chatton, 1907, a microsporidian parasite of Daphnia magna and Daphnia pulex, with establisment of the new genus Glugoides (Microspora, Glugeidae). Europ J Protistol 32:251–261

    Article  Google Scholar 

  • Little TJ, Carius HJ, Sakwinska O, Ebert D (2002) Competitiveness and life-history characteristics of Daphnia with respect to susceptibility to a bacterial pathogen. J Evol Biol 15:796–802

    Article  Google Scholar 

  • Mackinnon MJ, Read AF (1999) Genetic relationships between parasite virulence and transmission in the rodent malaria Plasmodium chabaudi. Evolution 53:689–703

    Article  Google Scholar 

  • May RM, Anderson RM (1983) Epidemiology and genetics in the coevolution of parasites and hosts. Proc R Soc B 219:281–313

    Article  CAS  Google Scholar 

  • Mitchell SE, Read AF, Little TJ (2004) The effect of a pathogen epidemic on the genetic structure and reproductive strategy of the crustacean Daphnia magna. Ecol Lett 7:848–858

    Article  Google Scholar 

  • Packer C, Holt RD, Hudson PJ, Lafferty KD, Dobson AP (2003) Keeping the herds healthy and alert: Implications of predator control for infectious disease. Ecol Lett 6:797–802

    Article  Google Scholar 

  • Refardt D, Ebert D (2006) Quantitative PCR to detect, discriminate and quantify intracellular parasites in their host: an example from three microsporidians in Daphnia. Parasitology 133:11–18

    Article  PubMed  CAS  Google Scholar 

  • Refardt D, Ebert D (2007) Inference of parasite local adaptation using two different fitness components. J Evol Biol 20:921–929

    Article  PubMed  CAS  Google Scholar 

  • Refardt D, Canning EU, Mathis A, Cheney SA, Lafranchi-Tristem NJ, Ebert D (2002) Small subunit ribosomal DNA phylogeny of microsporidia that infect Daphnia (Crustacea: Cladocera). Parasitology 124:381–389

    Article  PubMed  CAS  Google Scholar 

  • Rigby MC, Hechinger RF, Stevens L (2002) Why should parasite resistance be costly? Trends Parasitol 18:116–120

    Article  PubMed  Google Scholar 

  • Rolff J, Joop G (2002) Estimating condition: pitfalls of using weight as a fitness correlate. Evol Ecol Res 4:931–935

    Google Scholar 

  • Roy BA, Kirchner JW (2000) Evolutionary dynamics of pathogen resistance and tolerance. Evolution 54:51–63

    PubMed  CAS  Google Scholar 

  • SAS Institute Inc (1989) JMP, Version 8. SAS Institute Inc., Cary

    Google Scholar 

  • Schmid-Hempel P, Ebert D (2003) On the evolutionary ecology of specific immune defence. Trends Ecol Evol 18:27–32

    Article  Google Scholar 

  • Schwarzenbach GA, Ward PI (2006) Responses to selection on phenoloxidase activity in yellow dung flies. Evolution 60:1612–1621

    PubMed  CAS  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Stirnadel HA, Ebert D (1997) Prevalence, host specificity and impact on host fecundity of microparasites and epibionts in three sympatric Daphnia species. J Anim Ecol 66:212–222

    Article  Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Google Scholar 

  • Tompkins DM, Begon M (1999) Parasites can regulate wildlife populations. Parasitol Today 15:311–313

    Article  PubMed  CAS  Google Scholar 

  • Vijendravarma RK, Kraaijeveld AR, Godfray HCJ (2009) Experimental evolution shows Drosophila melanogaster resistance to a microsporidian pathogen has fitness costs. Evolution 63:104–114

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank N. Basieux, J. Hottinger, S. Lass and L. Sygnarski for technical assistance, M. Kölliker for statistical advice, and H. K. Alexander for polishing the language. The manuscript benefitted from comments by J. Bull, J. Jokela, C. Kost, S. Lass, M. Zbinden, two anonymous reviewers, and the handling editor. The authors were supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Refardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Refardt, D., Ebert, D. The impact of infection on host competition and its relationship to parasite persistence in a Daphnia microparasite system. Evol Ecol 26, 95–107 (2012). https://doi.org/10.1007/s10682-011-9487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-011-9487-5

Keywords

Navigation