Skip to main content
Log in

Stability in abundance and niche breadth of gamasid mites across environmental conditions, parasite identity and host pools

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

There is substantial variability among populations of the same species in basic features such as abundance or niche breadth, and it is unclear to what extent these are true species traits as opposed to the product of local environmental factors. In parasites, abundance and niche breadth, i.e. host specificity, show repeatability among different populations of the same species, but may also be influenced by external forces, depending on the parasite taxa studied. We tested whether the abundance and host specificity of gamasid mites parasitic on small mammals from 26 different geographic regions of the Palaearctic, are species-specific or instead determined by host identity and/or parameters of the biotic and abiotic environment. Values of abundance and host specificity (measured as the number of host species used) were significantly more similar among populations of the same mite species than among different mite species; despite also showing consistency within particular host species or regions independently of mite species identity, both abundance and the number of host species used appear to be true mite species traits. In contrast, the taxonomic distinctness of host species used by a mite showed little repeatability among populations of the same mite species, and appears mostly determined by the local pool of available host species. Within given mite species, all three variables (abundance, number of host species used, and their taxonomic distinctness) covaried to some extent with one or more environmental factors (e.g., nature of the local host assemblage, temperature, precipitation) across geographical regions, but there was no universal pattern among results from different mite species. These results are similar to those obtained earlier on other taxa, e.g. fleas, and suggest that there are general laws acting on spatial patterns of parasite abundance and host specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arneberg P, Skorping A, Read AF (1997) Is population density a species character? Comparative analyses of the nematode parasites of mammals. Oikos 80:289–300

    Article  Google Scholar 

  • Beissinger SR, Westphal MI (1998) On the use of demographic models of population viability in endangered species management. J Wildl Manage 62:821–841

    Article  Google Scholar 

  • Bird S, Zou J, Secombes C (2006) Advances in fish cytokine biology give clues to the evolution of a complex network. Curr Pharm Des 12:3051–3069

    Article  PubMed  CAS  Google Scholar 

  • Blackburn TM, Gaston KJ (2001) Linking patterns in macroecology. J Anim Ecol 70:338–352

    Article  Google Scholar 

  • Boone MD, Semlitsch RD, Little EE, Doyle MC (2007) Multiple stressors in amphibian communities: effects of chemical contamination, bullfrogs, and fish. Ecol Appl 17:291–301

    Article  PubMed  Google Scholar 

  • Bregetova NG (1956) Gamasoidea. Keys to the fauna of the USSR, Issue 61. Academy of Science of USSR, Leningrad (in Russian)

  • Brooks DR, McLennan DA (1991) Phylogeny, ecology, and behavior. A research program in comparative biology. University of Chicago Press, Chicago

    Google Scholar 

  • Clarke KR, Warwick RM (1998) A taxonomic distinctness index and its statistical properties. J Appl Ecol 35:523–531

    Article  Google Scholar 

  • Clarke KR, Warwick RM (1999) The taxonomic distinctness measure of biodiversity: weighting of step lengths between hierarchical levels. Mar Ecol Prog Ser 184:21–29

    Article  Google Scholar 

  • Crystal MM (1986) Artificial feeding of northern fowl mites, Ornithonyssus sylviarum (Canestrini and Fanzago) (Acari: Macronyssidae), through membranes. J Parasitol 72:550–554

    Article  PubMed  CAS  Google Scholar 

  • Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14:342–355

    Article  Google Scholar 

  • Degen AA (1997) Ecophysiology of small desert mammals. Springer, Berlin

    Google Scholar 

  • Fox LR, Morrow PA (1981) Specialization: species property or local phenomenon? Science 211:887–893

    Article  PubMed  CAS  Google Scholar 

  • Furman DP (1959) Observations on the biology and morphology of Haemogamasus ambulans (Thorell) (Acarina: Haemogamasidae). J Parasitol 45:274–280

    Article  PubMed  CAS  Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233

    Article  Google Scholar 

  • Garcia LV (2004) Escaping the Bonferroni iron claw in ecological studies. Oikos 105:657–663

    Article  Google Scholar 

  • Goncharova AA (1958) Biology of a gamasid mite Hirstionyssus criceti Sylz in the Trans-Baikalia. Sci Trans Chita Res Inst Epidemiol Microbiol Hygiene [Nauchnye Zapiski Chitinskogo Nauchno-Issledovatelskogo Instituta Epidemiologii. Microbiologii i Gigieny] 4:65–70 (in Russian)

    Google Scholar 

  • Halliday RB (1998) Mites of Australia: a checklist and bibliography. CSIRO, Melbourne

    Google Scholar 

  • Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL (2000) Supply-side ecology works both ways: the link between benthic adults, fecundity, and larval recruits. Ecology 81:2241–2249

    Article  Google Scholar 

  • Kineman JJ, Hastings DA, Ohrenschall MA, Colby J, Schoolcraft DC, Klaus J, Knight J, Krager L, Hayes P, Oloughlin K., Dunbar P, Ikleman J, Anderson C, Burland J, Dietz J, Fisher H, Hannaughan A, Kelly M, Boyle S, Callaghan M, Delamana S, Di L, Gomolski K, Green D, Hochberg S, Holquist W, Johnson G, Lewis L, Locher A, Mealey A, Middleton L, Mellon D, Nigro L, Panskowitz J, Racey S, Roake B, Ross J, Row L, Schacter J, Weschler P (eds) (2000) Global ecosystems database version II: database, user’s guide, and dataset documentation. US Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center. http://www.ngdc.noaa.gov/seg/ecosys/ecosys.shtml (accessed on 22 Nov 2007)

  • Klein SL, Nelson RJ (1998) Adaptive immune responses are linked to the mating system of arvicoline rodents. Am Nat 151:59–67

    Article  PubMed  CAS  Google Scholar 

  • Korallo NP, Vinarski MV, Krasnov BR, Shenbrot GI, Mouillot D, Poulin R (2007) Are there general rules governing parasite diversity? Small mammalian hosts and gamasid mite assemblages. Divers Distrib 13:353–360

    Article  Google Scholar 

  • Kozlova RG (1982) Life cycle, feeding and reproduction in mites Haemogamasus ambulans (Gamasoidea, Haemogamasidae). Parazitologiya 16:219–223 (in Russian)

    CAS  Google Scholar 

  • Kozlova RG (1983) The effect of air moisture on development, survival and behaviour of the mite Haemogamasus nidi (Gamasoidea, Haemogamasidae). Parazitologiya 17:293–298 (in Russian)

    Google Scholar 

  • Kozlova RG (1987) Some questions about biology of mites Haemolaelaps glasgowi (Gamasoidea). Parazitologiya 21:496–499 (in Russian)

    Google Scholar 

  • Krasnov BR, Khokhlova IS, Fielden LJ, Burdelova NV (2001) The effect of temperature and humidity on the survival of pre-imaginal stages of two flea species (Siphonaptera: Pulicidae). J Med Entomol 38:629–637

    Article  PubMed  CAS  Google Scholar 

  • Krasnov BR, Shenbrot GI, Khokhlova IS, Degen AA (2004a) Flea species richness and parameters of host body, host geography and host “milieu”. J Anim Ecol 73:1121–1128

    Article  Google Scholar 

  • Krasnov BR, Mouillot D, Shenbrot GI, Khokhlova IS, Poulin R (2004b) Geographical variation in host specificity of fleas (Siphonaptera): the influence of phylogeny and local environmental conditions. Ecography 27:787–797

    Article  Google Scholar 

  • Krasnov BR, Shenbrot GI, Khokhlova IS, Poulin R (2004c) Relationships between parasite abundance and the taxonomic distance among a parasite’s host species: an example with fleas parasitic on small mammals. Int J Parasitol 34:1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Krasnov BR, Shenbrot GI, Mouillot D, Khokhlova IS, Poulin R (2005) Spatial variation in species diversity and composition of flea assemblages in small mammalian hosts: geographic distance or faunal similarity? J Biogeogr 32:633–644

    Article  Google Scholar 

  • Krasnov BR, Shenbrot G, Khokhlova IS, Poulin R (2006) Is abundance a species attribute of haematophagous ectoparasites? Oecologia 150:132–140

    Article  PubMed  Google Scholar 

  • Legendre S, Clobert J, Møller AP, Sorci G (1999) Demographic stochasticity and social mating system in the process of extinction of small populations: the case of passerines introduced to New Zealand. Am Nat 153:449–463

    Article  Google Scholar 

  • Luo L-P, Guo X-G, Quian T-J, Wu D, Men X-Y, Dong W-G (2007) Distribution of gamasid mites on small mammals in Yunnan province, China. Insect Sci 14:71–78 (in Chinese)

    Article  Google Scholar 

  • Maurer V, Baumgärtner J (1992) Temperature influence on life table statistics of the chicken mite Dermanyssus gallinae (Acari: Dermanyssidae). Exp Appl Acarol 15:27–40

    Article  PubMed  CAS  Google Scholar 

  • Mendes L, Piersma T, Hasselquist D, Matson KD, Ricklefs RE (2006) Variation in the innate and acquired arms of the immune system among five shorebird species. J Exp Biol 209:284–291

    Article  PubMed  Google Scholar 

  • Moran MD (2003) Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100:403–405

    Article  Google Scholar 

  • Morris DW (1988) Habitat-dependent population regulation and community structure. Evol Ecol 2:253–269

    Article  Google Scholar 

  • Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878

    Article  Google Scholar 

  • Newton I (1998) Population limitation in birds. Academic Press, London

    Google Scholar 

  • Ostfeld RS, Keesing F (2000a) The function of biodiversity in the ecology of vector-borne zoonotic diseases. Can J Zool 78:2061–2078

    Article  Google Scholar 

  • Ostfeld RS, Keesing F (2000b) Biodiversity and disease risk: the case of Lyme disease. Conserv Biol 14:722–728

    Article  Google Scholar 

  • Perneger TV (1998) What’s wrong with Bonferroni adjustments. Br Med J 316:1236–1238

    CAS  Google Scholar 

  • Perneger TV (1999) Adjusting for multiple testing in studies is less important than other concerns. Br Med J 318:1288

    CAS  Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Google Scholar 

  • Poulin R (2006) Variation in infection parameters among populations within parasite species: intrinsic properties versus local factors. Int J Parasitol 36:877–885

    Article  PubMed  Google Scholar 

  • Poulin R (2007) Are there general laws in parasite ecology? Parasitology 134:763–776

    Article  PubMed  CAS  Google Scholar 

  • Poulin R, Mouillot D (2003) Parasite specialization from a phylogenetic perspective: a new index of host specificity. Parasitology 126:473–480

    Article  PubMed  CAS  Google Scholar 

  • Poulin R, Krasnov BR, Morand S (2006) Patterns of host specificity in parasites exploiting small mammals. In: Morand S, Krasnov BR, Poulin R (eds) Micromammals and macroparasites: from evolutionary ecology to management. Springer, Tokyo, pp 233–256

    Chapter  Google Scholar 

  • Radovsky FJ (1967) The Macronyssidae and Laelapidae (Acarina: Mesostigmata) parasitic on bats. Univ Calif Publ Entomol 46:1–288

    Google Scholar 

  • Radovsky FJ (1985) Evolution of mammalian mesostigmatid mites. In: Kim KC (ed) Coevolution of parasitic arthropods and mammals. John Wiley, New York, pp 441–504

    Google Scholar 

  • Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1:43–46

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko ZG, Strihanova EV, Petrova RA, Timofeev MN, Meleshko NS (1975) Materials of the study of Gamasina mites of the Krasnodar region. Problems Particularly Dangerous Infect 43–44:103–111 (in Russian)

    Google Scholar 

  • Sikes RK, Chamberlain RW (1954) Laboratory observations on three species of bird mites. J Parasitol 40:691–697

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New York

    Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Google Scholar 

  • Timms R, Read AF (1999) What makes a specialist special? Trends Ecol Evol 14:333–334

    Article  PubMed  Google Scholar 

  • Tucci EC, Prado AP, Araújo RP (2005) Fecundidade de Dermanyssus gallinae (De Geer, 1778) (acari, dermanyssidae) em laboratório. Arq Inst Biol São Paulo 72:29–32

    Google Scholar 

  • Vinarski MV, Korallo NP, Krasnov BR, Shenbrot GI, Poulin R (2007) Decay of similarity of gamasid mite assemblages parasitic on Paleoarctic small mammals: geographic distance, host species composition or environment? J Biogeogr 34:1691–1700

    Article  Google Scholar 

  • Ward SA (1992) Assessing functional explanations of host specificity. Am Nat 139:883–891

    Article  Google Scholar 

  • Warwick RM, Clarke KR (2001) Practical measures of marine biodiversity based on relatedness of species. Oceanogr Mar Biol 39:207–231

    Google Scholar 

  • Wilson DE, Reeder DM (eds) (2005) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. John Hopkins University Press, Baltimore

    Google Scholar 

  • Yudin BS, Krivosheev VG, Belyaev VG (1976) Small mammals of the Northern Far East. Nauka, Novosibirsk (in Russian)

    Google Scholar 

  • Zeman P (1988) Surface skin lipids of birds – a proper host kairomone and feeding inducer in the poultry red mite, Dermanyssus gallinae. Exp Appl Acarol 5:163–173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by the Israel Science Foundation (Grant no. 249/04 to B.R.K). This is publication no. 585 of the Mitrani Department of Desert Ecology and no. 237 of the Ramon Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris R. Krasnov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korallo-Vinarskaya, N.P., Krasnov, B.R., Vinarski, M.V. et al. Stability in abundance and niche breadth of gamasid mites across environmental conditions, parasite identity and host pools. Evol Ecol 23, 329–345 (2009). https://doi.org/10.1007/s10682-007-9229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-007-9229-x

Keywords

Navigation