Skip to main content
Log in

Fruit production and floral traits: correlated evolution in Govenia (Orchidaceae)

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The most common estimate of reproductive success in orchids is usually fruit set. Factors such as resource limitation and certain floral traits may influence reproductive success in animal-pollinated plants. Correlated evolution of reproductive success vs. seven floral traits (inflorescence length, flower number, flower distribution along inflorescence, dorsal sepal length, lateral sepal length, flower color, and column position) was studied in eight species of Govenia. Taxa represented three lineages in the genus. Independent contrasts were calculated on a phylogeny inferred from chloroplast (trnL-F IGS) DNA sequences, and a correlation test and multiple regression were then performed. Two data sets were evaluated, one including all eight species and another excluding G. utriculata, which is autogamous. The historical analyses showed that there is a correlation between reproductive success and dorsal sepal length, column position, and flower number, these correlations suggest that changes in these floral traits usually accompany evolutionary shifts in reproductive success. Multiple regression tests suggest that changes in reproductive success can be explained by shifts in flower number, inflorescence length, column position and by dorsal sepal length. When phylogeny is taken into account, our analyses showed that evolutionary shifts in these floral traits were correlated with changes in reproductive success. Evolutionary correlation between reproductive success and floral traits might be explained by the natural selection of certain floral phenotypes by pollinators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackerman JD, Montalvo AM (1990) Short and long term limitations to fruit production in a tropical orchid. Ecology 71:263–272

    Article  Google Scholar 

  • Aragón S, Ackerman JD (2004) Does flower color variation matter in deception pollinated Psychilis monensis (Orchidaceae)? Oecologia 138:405–413

    Article  PubMed  Google Scholar 

  • Bierzychudek P (1981) Pollinator limitation of plant reproductive effort. Amer Nat 117:838–840

    Article  Google Scholar 

  • Calvo RN (1990) Inflorescence size and fruit distribution among individuals in three orchid species. Amer J Bot 77:1378–1381

    Article  Google Scholar 

  • Calvo RN, Horvitz CC (1990) Pollinator limitation, cost of reproduction, and fitness in plants: a transition matrix demographic approach. Amer Nat 136:499–516

    Article  Google Scholar 

  • Cameron KM, Chase MW, Whitten MW, Kores PJ, Jarrell DC, Albert VA, Yukawa T, Hills HG, Goldman DH (1999) A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. Amer J Bot 86:208–224

    Article  Google Scholar 

  • Carvalho P, Felizola JA, Bini LM (2006) Factors influencing changes in trait correlations across species after using phylogenetic independent contrasts. Evol Ecol 20:591–602

    Article  Google Scholar 

  • Catling PM (1990) Auto-pollination in the Orchidaceae. In: Arditti J (ed) Orchid biology: reviews and perspectives. Comstock Pub, Ithaca, New York, pp 123–158

    Google Scholar 

  • Catling PM, Catling VR (1991) A synopsis of breeding systems and pollination in north American orchids. Lindleyana 6:187–210

    Google Scholar 

  • Cole FR, Firmage DH (1984) The floral ecology of Platanthera blephariglottis. Amer J Bot 71:700–710

    Article  Google Scholar 

  • Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequences of deception? Trends Ecol Evol 20:487–494

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochemistry Bull 19:11–15

    Google Scholar 

  • Ehlers BK, Olesen JM, Ågren J (2002) Floral morphology and reproductive success in the orchid Epipactis helleborine: regional and local across-habitat variation. Plant Syst Evol 236:19–32

    Article  Google Scholar 

  • Faegri K, van der Pijl L (1971) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Amer Nat 125:1–15

    Article  Google Scholar 

  • Fenster CB (2004) Pollination syndromes and flora specialization. Annu Rev Ecol Syst 35:375–403

    Article  Google Scholar 

  • Firmage DH, Cole FR (1988) Reproductive success and inflorescence size of Calopogon tuberosus (Orchidaceae). Amer J Bot 75:1371–1377

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimal change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Flores-Palacios A, García-Franco JG (2003) Effects of floral display and plant abundance on fruit production of Rhyncholaelia glauca (Orchidaceae). Rev Biol Trop 51:71–78

    PubMed  Google Scholar 

  • García-Cruz J, Sosa V (2005) Phylogenetic relationships and character evolution in Govenia (Orchidaceae). Can J Bot 83:1329–1339

    Article  Google Scholar 

  • Garland TJ, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32

    Article  Google Scholar 

  • Garland TJ, Midford PE, Jones JA, Dickerman AW, Díaz-Uriarte R (2001) Phenotypic diversity analysis program ver. 5.0. University of California, Riverside

    Google Scholar 

  • Huelsenbeck JP, Rannala B (2003) Detecting correlation between characters in a comparative analysis with uncertain phylogeny. Evolution 57:1237–1247

    PubMed  Google Scholar 

  • Ishii HS (2006) Floral display influences subsequent plant choice by bumble bees. Func Ecol 20:233–238

    Article  Google Scholar 

  • Janzen DH, DeVries P, Gladstone DE, Higgins ML, Lewinsohn TM (1980) Self- and cross-pollination of Encyclia cordigera (Orchidaceae) in Santa Rosa National Park, Costa Rica. Biotropica 12:72–74

    Article  Google Scholar 

  • Kevan PG (1978) Floral coloration, its colorimetric analysis and significance in anthecology. In: Richards AJ (ed) Pollination of flowers by insects. Academic Press, London, pp 51–78

    Google Scholar 

  • Krannitz PG, Maun MA (1991) An experimental study of floral display size and reproductive success in Vibumum opulus: importance of grouping. Can J Bot 69:394–399

    Article  Google Scholar 

  • Malo EJ, Leirana-Alcocer J, Parra-Tabla V (2001) Population fragmentation, florivory, and the effects of flower morphology alterations on the pollination success of Myrmecophila tibicinis (Orchidaceae). Biotropica 33:529–534

    Google Scholar 

  • Murren CJ, Ellison AM (1996) Effects of habitat, plant size, and floral display on male and female reproductive success of the neotropical orchid Brassavola nodosa. Biotropica 28:30–41

    Article  Google Scholar 

  • Nilsson LA (1992) Orchid pollination biology. Tree 7:255–259

    Google Scholar 

  • Proctor HC, Harder LD (1994) Pollen load, capsule weight, and seed production in three orchid species. Can J Bot 72:249–255

    Article  Google Scholar 

  • Rambaut A (2002) Se–Al sequence alignment editor v2.0a11. Oxford University, Oxford

    Google Scholar 

  • Rodríguez-Robles J, Meléndez EJ, Ackerman JD (1992) Effects of display size, flowering phenology, and nectar availability on effective visitation frequency in Comparettia falcata (Orchidaceae). Amer J Bot 79:1009–1017

    Article  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76

    Article  CAS  Google Scholar 

  • Sabat AM, Ackerman JD (1996) Fruit set in a deceptive orchid: the effect of flowering phenology, display size, and local floral abundance. Amer J Bot 83:1181–1186

    Article  Google Scholar 

  • Schemske DW (1980) Evolution of floral display in orchid Brassavola nodosa. Evolution 34:489–493

    Article  Google Scholar 

  • Schemske DW, Horwitz CC (1984) Variation among floral visitors in pollination ability, a precondition for mutualism specialization. Science 225:519–521

    Article  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry. The principles and practice of statistics in biological research. W. H. Freeman and Company, New York

    Google Scholar 

  • StatSoft I (1998) STATISTICA for windows [computer program manual] 5.1. StatSoft, Inc., Tulsa

    Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods) 4.0b10. Sinauer Associates, Inc., Sunderland, Massachusetts

    Google Scholar 

  • Taberlet P, Ludovic G, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc 84:1–54

    Article  Google Scholar 

  • van der Pijl L, Dodson CH (1965) Orchid flowers: their pollination and evolution. University of Miami Press, Florida

    Google Scholar 

  • Zimmerman JK, Aide TM (1989) Patterns of fruit production in a neotropical orchid: pollinator vs. resource limitation. Amer J Bot 76:67–73

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Adolfo Espejo, Ivón Ramírez and Germán Carnevali for their reviews and comments on a previous version of the manuscript. We acknowledge the help of Flor Rodríguez in the lab. The first author gratefully acknowledges support from CONACYT for a fellowship. We also thank CONACYT for the grant to VS (P39601526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier García-Cruz.

Appendices

Appendix 1

Taxa studied, selected specimens for observation of floral traits, the voucher of the DNA sequences (trnL-F IGS) used in this paper are marked with *. Herbarium abbreviations according to Index Herbariorum (www.nybg.org).

Aplectrum hyemale (Muhl. ex Willd.) Nutt. USA: (AF19959*). Bletia lilacina A. Rich. & Galeotti. MEXICO: Oaxaca: Sosa et al. 1273* (UC, XAL). Bletia purpurea (Lam.) DC. CUBA: Pinar del Río: Sosa et al. 1275* (UC, XAL). Govenia capitata Lindl.: MEXICO: Michoacán: Carranza 4094 (IEB); Díaz Barriga 2628 (IEB 94598); Rzedowski 50729 (IEB); Zamudio and Díaz Barriga 4156 (IEB); Zamudio and García 3954 (AMO, IEB); Zamudio and García-Cruz 12471* (IEB); Zamudio and Grimaldo 6671 (IEB). Govenia lagenophora Lindl.: MEXICO: Michoacán: Grimaldo 143 (IEB); Pérez and García 1700 (IEB); Pérez and Zamudio 3144 (IEB); Silva-Sáez 938 (IEB); Zamudio and García-Cruz 12494* (IEB). Govenia liliacea (Lex.) Lindl.: MEXICO: Jalisco: López-Ferrari and Espejo 955 (AMO); García-Cruz and Sánchez 1448* (AMO); Garza 410 (AMO); Cházaro and Machuca 6668 (XAL); Flores et al. 483 (AMO, IEB); S. R. de Velasco 43 (AMO x3). Govenia praecox Salazar & E. W. Greenw.: MEXICO: Veracruz: García-Cruz et al. 1447* (AMO); Hernández 128 (AMO); Salazar et al. 4748 (AMO); Salazar et al. 5071 (AMO); Martínez 774 (XAL). Govenia purpusii Schltr.: MEXICO: Jalisco: García-Cruz et al. 1449* (AMO); Santana et al. 694 (XAL); González-Tamayo s. n. (IEB); González-Tamayo and Velasco s. n. (AMO). Govenia superba (Lex.) Lodd.: MEXICO: Michoacán: Pérez-Calix 133 (AMO, IEB, XAL); Escobedo 1550 (AMO, IEB, XAL); Rzedowski 40255 (IEB); Zamudio and García-Cruz 12448* (IEB). Govenia tequilana Dressler & Hagsater: MEXICO: Jalisco: García-Cruz et al. 1450 (AMO); Hágsater 2715 (AMO, MO); Velasco 44 (AMO), 45 (AMO, MEXU); Velasco and González-Tamayo s. n. (AMO). Govenia utriculata (Sw.) Lindl.: JAMAICA: Morris 33 (NY); Syme 2413 (NY); Rothrock 71 (F); Britton 2847 (NY). Manchester: Proctor 25619 (AMES). St. Catherine: Howard and Proctor 15080 (AMES). MEXICO: Veracruz: Castillo-Campos et al. 18134* (XAL).

Appendix 2

Table 5 Results of the PICS correlation analysis for the 18 most parsimonious trees retrieved in the phylogentic analysis

Appendix 3

Table 6 Multiple regression for PICS analysis for the 18 most parsimonious trees retrieved in phylogenetic analysis indicating the floral traits retained by the model

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Cruz, J., Sosa, V. Fruit production and floral traits: correlated evolution in Govenia (Orchidaceae). Evol Ecol 22, 801–815 (2008). https://doi.org/10.1007/s10682-007-9210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-007-9210-8

Keywords

Navigation