Skip to main content
Log in

Out of the frying pan into the fire: an ecological perspective on evolutionary reversal in life history in plethodontid salamanders (Amphibia: Plethodontidae)

  • Review
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

I review and analyze interaction webs involving competition and predation in ensembles of plethodontid salamanders in the southern Appalachian Mountains, USA. The objective is to evaluate hypotheses on interaction webs and population regulation in these ensembles in the context of traditional and recent models of phylogeny and life-history evolution of plethodontids. Two ecological hypotheses evaluated are (1) Hairston’s conjecture on differences in the kinds of interactions prevalent among biphasic species with an aquatic larval stage, versus terrestrial species with direct development; and (2) Grover’s hypothesis on differences in the factors that limit the distribution of species along the moisture gradient from stream to forest. An evolutionary question concerns the supposition derived from recent phylogenetic reconstructions that the history of one major clade, the supergenus Desmognathus, involved an early transition or reversal from a simple life cycle (direct development) to a biphasic life cycle (larval development, metamorphosis), and that this transition promoted the subsequent adaptive radiation of the taxon. Chippindale et al. proposed that selection for life-history reversal in the genus Desmognathus was promoted by competition between direct-developing ancestral desmognathans and other terrestrial plethodontids. Experimental studies of interaction webs in extant ensembles of plethodontids in the southern Appalachians, in concert with data from descriptive studies of feeding and habitat use, demonstrate variation in the relative importance of competition and predation in population regulation of species in the several codistributed lineages of these salamanders. Whereas the existing ecological data do not refute the Chippindale et al. hypothesis, many unresolved questions require additional investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrams PA (2001) Describing and quantifying interspecific interactions: a commentary on recent approaches. Oikos 94:209–218

    Article  Google Scholar 

  • Adams DC (2004) Character displacement via aggressive interference in Appalachian salamanders. Ecology 85:2664–2670

    Article  Google Scholar 

  • Baldwin AS (2002) Systematics of salamander genera Stereochilus, Gyrinophilus, and Pseudotriton (Plethodontidae) and phylogeography of Pseudotriton ruber. Ph.D. dissertation, University of Texas-Arlington, Arlington

  • Beachy CK (1993) Guild structure in streamside salamander communities: a test for interactions among larval plethodontid salamanders. J Herpetol 27:465–468

    Article  Google Scholar 

  • Beachy CK (1994) Community ecology in streams: effects of two species of predatory salamanders on a prey species of salamander. Herpetologica 50:129–136

    Google Scholar 

  • Beachy CK (1997) Effect of predatory larval Desmognathus quadramaculatus on growth, survival, and metamorphosis of larval Eurycea wilderae. Copeia 1997:131–137

    Article  Google Scholar 

  • Bonett RM, Mueller RL, Wake DB (2005) Why should reacquisition of larval stages by desmognathine salamanders surprise us? Herpetol Rev 36:112–113

    Google Scholar 

  • Bruce RC (1968) Life history studies of salamanders of the genus Pseudotriton (Caudata: Plethodontidae). Ph.D. dissertation, Duke University, Durham

  • Bruce RC (1972) Variation in the life cycle of the salamander Gyrinophilus porphyriticus. Herpetologica 28:230–245

    Google Scholar 

  • Bruce RC (1979) Evolution of paedomorphosis in salamanders of the genus Gyrinophilus. Evolution 33:998–1000

    Article  Google Scholar 

  • Bruce RC (1991) Evolution of ecological diversification in desmognathine salamanders. Herpetol Rev 22:44–46

    Google Scholar 

  • Bruce RC (1996) Life-history perspective of adaptive radiation in desmognathine salamanders. Copeia 1996:783–790

    Article  Google Scholar 

  • Bruce RC (2003) Ecological distribution of the salamanders Gyrinophilus and Pseudotriton in a southern Appalachian watershed. Herpetologica 59:301–310

    Article  Google Scholar 

  • Bruce RC (2005) Did Desmognathus salamanders reinvent the larval stage? Herpetol Rev 36:107–112

    Google Scholar 

  • Burton TM (1976) An analysis of the feeding ecology of the salamanders (Amphibia, Urodela) of the Hubbard Brook Experimental Forest, New Hampshire. J Herpetol 10:187–204

    Article  Google Scholar 

  • Camp CD (1997) The status of the black-bellied salamander (Desmognathus quadramaculatus) as a predator of heterospecific salamanders in Appalachian streams. J Herpetol 31:613–616

    Article  Google Scholar 

  • Carr DE, Taylor DH (1985) Experimental evaluation of population interactions among three sympatric species of Desmognathus. J Herpetol 19:507–514

    Article  Google Scholar 

  • Chippindale PT, Bonett RM, Baldwin AS, Wiens JJ (2004) Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution 58:2809–2822

    PubMed  CAS  Google Scholar 

  • Chippindale PT, Wiens JJ (2005) Re-evolution of the larval stage in the plethodontid salamander genus Desmognathus. Herpetol Rev 36:113–117

    Google Scholar 

  • Connell JH (1975) Some mechanisms producing structure in natural communities: a model and evidence from field experiments. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, pp 460–490

    Google Scholar 

  • Davic RD (1991) Ontogenetic shift in diet of Desmognathus quadramaculatus. J Herpetol 25:108–111

    Article  Google Scholar 

  • Davic RD (2005) Using limb morphology to distinguish two-lined salamander larvae (Eurycea) from northern dusky salamander larvae (Desmognathus). Herpetol Rev 36:9–12

    Google Scholar 

  • Ducey PK, Schramm K, Cambry N (1994) Interspecific aggression between the sympatric salamanders, Ambystoma maculatum and Plethodon cinereus. Am Midl Nat 131:320–329

    Article  Google Scholar 

  • Dunn ER (1926) The salamanders of the family Plethodontidae. Smith College, Northampton

    Google Scholar 

  • Estes R (1981) Gymnophiona, Caudata. Handbuch der Paläoherpetologie, Teil 2. Gustav Fischer Verlag, Stuttgart, Germany

    Google Scholar 

  • Fauth JE (1998) Investigating geographic variation in interspecific interactions using common garden experiments. In: Resetarits WJ Jr, Bernardo J (eds) Experimental ecology: issues and perspectives. Oxford University Press, Oxford, pp 394–415

    Google Scholar 

  • Fauth JE, Bernardo J, Camara M, Resetarits WJ Jr, Van Buskirk J, McCollum SA (1996). Simplifying the jargon of community ecology: a conceptual approach. Am Nat 147:282–286

    Article  Google Scholar 

  • Formanowicz DR Jr, Brodie ED Jr (1993) Size-mediated predation pressure in a salamander community. Herpetologica 49:265–270

    Google Scholar 

  • Fraser DF (1976a) Coexistence of salamanders in the genus Plethodon: a variation of the Santa Rosalia theme. Ecology 57:238–251

    Article  Google Scholar 

  • Fraser DF (1976b) Empirical evaluation of the hypothesis of food competition in salamanders of the genus Plethodon. Ecology 57:459–471

    Article  Google Scholar 

  • Griffis MR, Jaeger RG (1998) Competition leads to an extinction-prone species of salamander: interspecific territoriality in a metapopulation. Ecology 79:2494–2502

    Article  Google Scholar 

  • Grover MC (2000) Determinants of salamander distributions along moisture gradients. Copeia 2000:156–168

    Article  Google Scholar 

  • Grover MC, Wilbur HM (2002) Ecology of ecotones: interactions between salamanders on a complex environmental gradient. Ecology 83:2112–2123

    Google Scholar 

  • Gustafson MP (1993) Intraguild predation among larval plethodontid salamanders: a field experiment in artificial stream pools. Oecologia 96:271–275

    Article  Google Scholar 

  • Gustafson MP (1994) Size-specific interactions among larvae of the plethodontid salamanders Gyrinophilus porphyriticus and Eurycea cirrigera. J Herpetol 28:470–476

    Article  Google Scholar 

  • Hairston NG (1949) The local distribution and ecology of the plethodontid salamanders of the southern Appalachians. Ecol Monogr 19:47–73

    Article  Google Scholar 

  • Hairston NG (1980a) Species packing in the salamander genus Desmognathus: what are the interspecific interactions involved? Am Nat 115:354–366

    Article  Google Scholar 

  • Hairston NG (1980b) The experimental test of an analysis of field distributions: competition in terrestrial salamanders. Ecology 61:817–826

    Article  Google Scholar 

  • Hairston NG (1980c) Evolution under interspecific competition: field experiments on terrestrial salamanders. Evolution 34:409–420

    Article  Google Scholar 

  • Hairston NG (1981) An experimental test of a guild: salamander competition. Ecology 62:65–72

    Article  Google Scholar 

  • Hairston NG (1983) Alpha selection in competing salamanders: experimental verification of an a priori hypothesis. Am Nat 122:105–113

    Article  Google Scholar 

  • Hairston NG Sr (1986) Species packing in Desmognathus salamanders: experimental demonstration of predation and competition. Am Nat 127:266–291

    Article  Google Scholar 

  • Hairston NG Sr (1987) Community ecology and salamander guilds. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hairston NG Sr (1996) Predation and competition in salamander communities. In: Cody ML, Smallwood JA (eds) Long-term studies of vertebrate communities. Academic, New York, NY, USA, pp 161–189

    Google Scholar 

  • Hairston NG Sr, Nishikawa KC, Stenhouse SL (1987) The evolution of competing species of terrestrial salamanders: niche partitioning or interference? Evol Ecol 1:247–262

    Article  Google Scholar 

  • Harris RN (1999) The anuran tadpole: evolution and maintenance. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. The University of Chicago Press, Chicago, IL, USA, pp 279–294

    Google Scholar 

  • Highton R (1983) A new species of woodland salamander of the Plethodon glutinosus group from the southern Appalachian Mountains. Brimleyana 9:1–20

    Google Scholar 

  • Highton R, Peabody RB (2000) Geographic protein variation and speciation in salamanders of the Plethodon jordani and Plethodon glutinosus complexes in the southern Appalachian Mountains with the description of four new species. In: Bruce RC, Jaeger RG, Houck LD (eds) The biology of plethodontid salamanders. Kluwer Academic/Plenum Publishers, New York, NY, USA, pp 31–93

    Google Scholar 

  • Holman JA (2006) Fossil salamanders of North America. Indiana University Press, Bloomington, IN, USA

    Google Scholar 

  • Huang C, Sih A (1991) Experimental studies on direct and indirect interactions in a three trophic-level stream system. Oecologia 85:530–536

    Article  Google Scholar 

  • Jaeger RG (1970) Potential extinction through competition between two species of terrestrial salamanders. Evolution 24:632–642

    Article  Google Scholar 

  • Jaeger RG (1971a) Competitive exclusion as a factor influencing the distributions of two species of terrestrial salamanders. Ecology 52:632–637

    Article  Google Scholar 

  • Jaeger RG (1971b) Moisture as a factor influencing the distributions of two species of terrestrial salamanders. Oecologia 6:191–207

    Article  Google Scholar 

  • Jaeger RG (1972) Food as a limited resource in competition between two species of terrestrial salamanders. Ecology 53:535–546

    Article  Google Scholar 

  • Jaeger RG, Gabor CR, Wilbur HM (1998) An assemblage of salamanders in the southern Appalachian Mountains: competitive and predatory behavior. Behaviour 135:795–821

    Google Scholar 

  • Johnson BR, Wallace JB (2005) Bottom-up limitation of a stream salamander in a detritus-based food web. Can J Fish Aquat Sci 62:301–311

    Article  Google Scholar 

  • Johnson BR, Wallace JB, Rosemond AD, Cross WF (2006) Larval salamander growth responds to enrichment of a nutrient poor headwater stream. Hydrobiologia 573:227–232

    Article  CAS  Google Scholar 

  • Keen WH (1982) Habitat selection and interspecific competition in two species of plethodontid salamanders. Ecology 63:94–102

    Article  Google Scholar 

  • Keen WH (1985) Habitat selection by two streamside plethodontid salamanders. Oecologia 66:437–442

    Article  Google Scholar 

  • Keen WH, Sharp S (1984) Responses of a plethodontid salamander to conspecific and congeneric intruders. Anim Behav 32:58–65

    Article  Google Scholar 

  • Kleeberger SR (1984) A test of competition in two sympatric populations of desmognathine salamanders. Ecology 65:1846–1856

    Article  Google Scholar 

  • Kozak KH, Larson A, Bonett RM, Harmon LJ (2005) Phylogenetic analysis of ecomorphological divergence, community structure, and diversification rates in dusky salamanders (Plethodontidae: Desmognathus). Evolution 59:2000–2016

    PubMed  Google Scholar 

  • Kozak KH, Weisrock DW, Larson A (2006) Rapid lineage accumulation in a non-adaptive radiation: phylogenetic analysis of diversification rates in eastern North American woodland salamanders (Plethodontidae: Plethodon). Proc R Soc B 273:539–546

    PubMed  CAS  Google Scholar 

  • Krzysik AJ (1979) Resource allocation, coexistence, and the niche structure of a streambank salamander community. Ecol Monogr 49:173–194

    Article  Google Scholar 

  • Lancaster DL, Jaeger RG (1995) Rules of engagement for adult salamanders in territorial conflicts with heterospecific juveniles. Behav Ecol Sociobiol 37:25–29

    Article  Google Scholar 

  • Lannoo M (2005) Amphibian declines: the conservation status of United States species. University of California Press, Berkeley, California, USA

    Google Scholar 

  • Larson A, Weisrock DW, Kozak KH (2003) Phylogenetic systematics of salamanders (Amphibia: Urodela), a review. In: Sever DM (ed) Reproductive biology and phylogeny of Urodela. Science Publishers Inc., Enfield,NH, USA, pp 31–108

    Google Scholar 

  • Lowe WH, Nislow KH, Bolger DT (2004) Stage-specific and interactive effects of sedimentation and trout on a headwater stream salamander. Ecol Appl 14:164–172

    Article  Google Scholar 

  • Macey JR (2005) Plethodontid salamander mitochondrial genomics: a parsimony evaluation of character conflict and implications for historical biogeography. Cladistics 21:194–202

    Article  Google Scholar 

  • Marshall JL, Camp CD, Jaeger RG (2004) Potential interference competition between a patchily distributed salamander (Plethodon petraeus) and a sympatric congener (Plethodon glutinosus). Copeia 2004:488–495

    Article  Google Scholar 

  • Martof BS, Scott DC (1957) The food of the salamander Leurognathus. Ecology 38:494–501

    Article  Google Scholar 

  • Marvin GA (1998) Interspecific aggression and spatial relationships in the salamanders Plethodon kentucki and Plethodon glutinosus: evidence of interspecific interference competition. Can J Zool 76:94–103

    Article  Google Scholar 

  • Mathis A, Jaeger RG, Keen WH, Ducey PK, Walls SC, Buchanan BW (1995) Aggression and territoriality by salamanders and a comparison with the territorial behaviour of frogs. In: Heatwole H, Sullivan BK (eds) Amphibian biology, vol 2. Social behaviour. Surrey Beatty & Sons, Chipping Norton, NSW, Australia, pp 633–676

    Google Scholar 

  • Menge BA, Sutherland JP (1987) Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am Nat 130:730–757

    Article  Google Scholar 

  • Milner AR (2000) Mesozoic and Tertiary Caudata and Albanerpetontidae. In: Heatwole H, Carroll RL (eds) Amphibian biology, vol 4. Palaeontology, the evolutionary history of Amphibians. Surrey Beatty & Sons, Chipping Norton, NSW, Australia, pp 1412–1444

    Google Scholar 

  • Mueller RL, Macey JR, Jaekel M, Wake DB, Boore JL (2004) Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. Proc Natl Acad Sci 101:13820–13825

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa KC (1985) Competition and the evolution of aggressive behavior in two species of terrestrial salamanders. Evolution 39:1282–1294

    Article  Google Scholar 

  • Nishikawa KC (1987) Interspecific aggressive behaviour in salamanders: species-specific interference or misidentification? Anim Behav 35:263–270

    Article  Google Scholar 

  • Peacor SD, Werner EE (2004) How dependent are species-pair interaction strengths on other species in the food web? Ecology 85:2754–2763

    Article  Google Scholar 

  • Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington, DC, USA

    Google Scholar 

  • Petranka JW, Smith CK (2005) A functional analysis of streamside habitat use by southern Appalachian salamanders: implications for riparian forest management. Forest Ecol Manag 210:443–454

    Article  Google Scholar 

  • Price JE, Secki Shields JA (2002) Size-dependent interactions between two terrestrial amphibians, Plethodon cinereus and Plethodon glutinosus. Herpetologica 58:141–155

    Article  Google Scholar 

  • Ransom TS, Jaeger RG (2006) An assemblage of salamanders in the southern Appalachian mountains revisited: competitive and predatory behavior? Behaviour 143:1357–1382

    Article  Google Scholar 

  • Resetarits WJ Jr (1991) Ecological interactions among predators in experimental stream communities. Ecology 72:1782–1793

    Article  Google Scholar 

  • Resetarits WJ Jr (1995) Competitive asymmetry and coexistence in size-structured populations of brook trout and spring salamanders. Oikos 73:188–198

    Article  Google Scholar 

  • Rissler LJ, Taylor DR (2003) The phylogenetics of desmognathine salamander populations across the southern Appalachians. Mol Phylogenet Evol 27:197–211

    Article  PubMed  CAS  Google Scholar 

  • Rissler LJ, Wilbur HM, Taylor DR (2004) The influence of ecology and genetics on behavioral variation in salamander populations across the Eastern Continental Divide. Am Nat 164:201–213

    Article  PubMed  Google Scholar 

  • Roudebush RE, Taylor DH (1987) Behavioral interactions between two desmognathine salamander species: importance of competition and predation. Ecology 68:1453–1458

    Article  Google Scholar 

  • Schwenk K, Wake DB (1993) Prey processing in Leurognathus marmoratus and the evolution of form and function in desmognathine salamanders (Plethodontidae). Biol J Linnean Soc 49:141–162

    Article  Google Scholar 

  • Skelly DK (1992) Field evidence for a cost of behavioral antipredator response in a larval amphibian. Ecology 73:704–708

    Article  Google Scholar 

  • Smith EM, Pough FH (1994) Intergeneric aggression among salamanders. J Herpetol 28:41–45

    Article  Google Scholar 

  • Southerland MT (1986a) Behavioral interactions among four species of the salamander genus Desmognathus. Ecology 67:175–181

    Article  Google Scholar 

  • Southerland MT (1986b) Behavioral niche expansion in Desmognathus fuscus (Amphibia: Caudata: Plethodontidae). Copeia 1986:235–237

    Article  Google Scholar 

  • Southerland MT (1986c) Coexistence of three congeneric salamanders: the importance of habitat and body size. Ecology 67:721–728

    Article  Google Scholar 

  • Titus TA, Larson A (1996) Molecular phylogenetics of desmognathine salamanders (Caudata: Plethodontidae): a reevaluation of evolution in ecology, life history, and morphology. Syst Biol 45:451–472

    Article  Google Scholar 

  • Wake DB (1966) Comparative osteology and evolution of the lungless salamanders, family Plethodontidae. Mem South Calif Acad Sci 4:1–111

    Google Scholar 

  • Wake DB, Hanken J (1996) Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution and phylogenesis? Int J Dev Biol 40:859–869

    PubMed  CAS  Google Scholar 

  • Wallace JB, Eggert SL, Meyer JL, Webster JR (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–104

    Article  CAS  Google Scholar 

  • Wallace JB, Eggert SL, Meyer JL, Webster JR (1999) Effects of resource limitation on a detrital-based ecosystem. Ecol Monogr 69:409–442

    Google Scholar 

  • Walls SC (1990) Interference competition in postmetamorphic salamanders: interspecific differences in aggression by coexisting species. Ecology 71:307–314

    Article  Google Scholar 

  • Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100

    Article  Google Scholar 

  • Wootton JT, Emmerson M (2005) Measurement of interaction strength in nature. Annu Rev Ecol Evol Syst 36:419–444

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Bruce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruce, R.C. Out of the frying pan into the fire: an ecological perspective on evolutionary reversal in life history in plethodontid salamanders (Amphibia: Plethodontidae). Evol Ecol 21, 703–726 (2007). https://doi.org/10.1007/s10682-006-9140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-006-9140-x

Keywords

Navigation