Skip to main content

Advertisement

Log in

Innate versus adaptive immunity in sticklebacks: evidence for trade-offs from a selection experiment

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

In vertebrates, the immune system consists of two arms of different characteristics: the innate and the acquired immune response. Parasites that are only shortly exposed to the immune system are most efficiently attacked by fast, constitutive innate immune mechanisms. Here, we experimentally selected within four fish families for high innate resistance versus susceptibility of three-spined sticklebacks (Gasterosteus aculeatus) against infection with the eye-fluke (Diplostomum pseudospathacaeum), a parasite whose metacercariae are protected from the immune system within the eye lens. We predicted that in families with high susceptibility, the adaptive immune system would be upregulated when challenged with infection. In accordance, we found that MHC class IIB expression is increased by approximately 50% in those lines selected for higher parasite load (i.e. low innate response). This suggests extensive genetic correlations between innate and adaptive immune system and/or crosstalk between both lines of defense. An efficient, specific innate immune response might reduce overall activation of the immune system and potentially alleviate associated effects of immunopathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal AF, Lively CM (2002) Infection genetics: gene-for-gene versus matching alleles models and all points in between. Evol Ecol Res 4:79–90

    Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in non-model vertebrates: what have we learned about natural selection in 15 years?. J Evol Biol 16:363–377

    Article  PubMed  CAS  Google Scholar 

  • Bogdan C, Rollinghoff M, Diefenbach A (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12:64–67

    Article  PubMed  CAS  Google Scholar 

  • Briles WE, Stone HA, Cole RK (1977) Mareks-Disease—effects of B-histocompatibility alloalleles in resistant and susceptible chicken lines. Science 195(4274):193–195

    Article  PubMed  CAS  Google Scholar 

  • Crowden AE, Broom DM (1980) Effects of the eyefluke, Diplostomum spathaceum, on the behaviour of dace (Leuciscus leuciscus). Anim Behav 28:287–294

    Article  Google Scholar 

  • Decamposlima PO, Gavioli R, Zhang QJ, Wallace LE, Dolcetti R, Rowe M, Rickinson AB, Masucci MG (1993) Hla-A11 epitope loss isolates of Epstein-Barr-virus from a highly A11+ population. Science 260(5104):98–100

    Article  CAS  Google Scholar 

  • Dixon B, Stet RJM (2001) The relationship between major histocompatibility receptors and innate immunity in teleost fish. Dev Comp Immunol 25(8–9):683–699

    Article  PubMed  CAS  Google Scholar 

  • Dybdahl MF, Lively CM (1998) Host-parasite coevolution: evidence for rare advantage and time-lagged selection in a natural population. Evolution 52(4):1057–1066

    Article  Google Scholar 

  • Dybdahl MF, Storfer A. (2003) Parasite local adaptation: Red queen versus suicide king. Trends Ecol Evol 18(10):523–530

    Article  Google Scholar 

  • Godot V, Harraga S, Beurton I, Tiberghien P, Sarciron E, Gottstein B, Vuitton DA (2000) Resistance/susceptibility to Echinococcus multilocularis infection and cytokine profile in humans. II. Influence of the HLA B8, DR3, DQ2 haplotype. Clin Exp Immunol 121(3):491–498

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DR (2004) Toll-like receptors and other links between innate and acquired alloimmunity. Curr Opin Immunol 16:538–544

    Article  PubMed  CAS  Google Scholar 

  • Grimholt U, Larsen S, Nordmo R, Midtlyng P, Kjoeglum S, Storset A, Saebo S., Stet RJM (2003) MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics 55(4):210–219

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1949) Disease and evolution. Ric Sci 19(Suppl):68–75

    Google Scholar 

  • Hamilton WD, Axelrod R, Tanese R (1990) Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci USA 87(9):3566–3573

    Article  PubMed  CAS  Google Scholar 

  • Harf R, Sommer S (2005) Association between major histocompatibility complex class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paeba, in the southern Kalahari. Mol Ecol 14(1):85–91

    Article  PubMed  CAS  Google Scholar 

  • Hill AVS, Allsopp CEM, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennet S, Brewster D, McMichael AJ, Greenwood BM (1991) Common West African HLA antigens are associated with protection from severe malaria. Nature 352:595–600

    Article  PubMed  CAS  Google Scholar 

  • Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  • Kalbe M, Kurtz J (2006) Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum. Parasitology 132:1–12

    Article  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  • Kurtz J, Kalbe M, Aeschlimann P, Häberli M, Wegner KM, Reusch TBH, Milinski M (2004) Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks. Proc R Soc Lond Ser B Biol Sci 271(1535):197–204

    Article  CAS  Google Scholar 

  • Kurtz J, Wegner KM, Kalbe M, Reusch TBH, Schaschl H, Hasselquist D, Milinski M (2006) MHC genes and oxidative stress in sticklebacks—an immuno-ecological approach. Proc R Soc Lond Ser B Biol Sci 273:1407–1414

    Article  CAS  Google Scholar 

  • Langefors Å, Lohm J, Grahn M, Andersen Ö, von Schantz T (2001) Association between major histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proc R Soc Lond Ser Biol Sci 268:479–485

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 CT method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway CA (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9(1):4–9

    Article  PubMed  CAS  Google Scholar 

  • Owen SF, Barber I, Hart PJB (1993) Low level infection by eye fluke, Diplostomum ssp., affects the vision of three-spined sticklebacks, Gasterosteus aculeatus. J Fish Biol 42:803–806

    Article  Google Scholar 

  • Parham P (2003) Innate immunity: the unsung heroes. Nature 423(6935):20

    Article  PubMed  CAS  Google Scholar 

  • Peichel CL, Nereng KS, Ohgi KA, Cole BLE, Colosimo PF, Buerkle CA, Schluter D, Kingsley DM (2001) The genetic architecture of divergence between threespine stickleback species. Nature 414(6866):901–905

    Article  PubMed  CAS  Google Scholar 

  • Rauch G, Kalbe M, Reusch TBH (2005) How a complex life cycle can improve a parasite’s sex life. J Evol Biol 18(4):1069–1075

    Article  PubMed  CAS  Google Scholar 

  • Rauch G, Kalbe M, Reusch TBH (2006) One day is enough: rapid and specific interactions between stickleback hosts and a trematode parasite. Biol Lett (2):382–384

    Article  PubMed  Google Scholar 

  • Schmid-Hempel P, Ebert D (2003) On the evolutionary ecology of specific immune defence. Trends Ecol Evol 18(1):27–32

    Article  Google Scholar 

  • Seppala O, Karvonen A, Valtonen ET (2004) Parasite-induced change in host behaviour and susceptibility to predation in an eye fluke–fish interaction. Anim Behav 68(2):257–263

    Article  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11(8):317–321

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman & Co, New York

    Google Scholar 

  • Thompson JN, Burdon JJ (1992) Gene-for-gene coevolution between plants and parasites. Nature 360:121–125

    Article  Google Scholar 

  • Wegner KM, Kalbe M, Kurtz J, Reusch TBH, Milinski M (2003) Parasite selection for immunogenetic optimality. Science 301:1343

    Article  PubMed  CAS  Google Scholar 

  • Wegner KM, Kalbe M, Rauch G, Kurtz J, Schaschl H, Reusch TBH (2006) Genetic variation in MHC class II expression and interactions with MHC sequence polymorphism in three-spined sticklebacks. Mol Ecol 15(4):1153–1164

    Article  PubMed  CAS  Google Scholar 

  • Whyte SK, Allan JC, Secombes CJ, Chappell LH (1987) Cercariae and diplostomules of Diplostomum spathaceum (Digenea) elicit an immune response in rainbow trout, Salmo gairdneri Richardson. J Fish Biol 31:185–190

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank I. Dankert, S. Liedtke, M. Wulf, G. Augustin and D. Lemcke for technical assistance. J. Kurtz, G. Rauch and two anonymous referees gave valuable comments on the manuscript. THB Reusch was supported by DFG, Re 1108/4 and /5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mathias Wegner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wegner, K.M., Kalbe, M. & Reusch, T.B.H. Innate versus adaptive immunity in sticklebacks: evidence for trade-offs from a selection experiment. Evol Ecol 21, 473–483 (2007). https://doi.org/10.1007/s10682-006-9129-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-006-9129-5

Keywords

Navigation