Skip to main content
Log in

Ecological constraints on the evolutionary association between field and preferred temperatures in Tropidurinae lizards

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Ectothermic body temperatures affect organismal performances and presumably fitness, and are strongly influenced by the thermal environment. Therefore, the processes of colonization of novel thermal habitats by lizards might involve changes in thermal preferences, performance curves (reaction norms) and field activity temperatures. According to theory based on optimality analysis, diverse aspects of the thermal biology of vertebrate ectotherms should co-evolve as to maximize performance at the temperature range more often experienced by animals in the field. One corollary of this premise is that derived lizard clades that experienced a significant shift in thermal ecology, in comparison with the ancestral condition, should prefer and select temperatures in a thermal gradient similar to those experienced in nature. Here we report an analysis of the premise stated before. Specifically, we verify whether or not Tropidurinae species from three major Brazilian habitats (the Rainforests, the semi-arid Caatingas and the Cerrados, a Savannah-like biome) differ in thermal ecology and thermoregulatory behavior. The Caatinga is believed to be the ancestral habitat of this sub-family, and differences are expected because species from semi-arid habitats usually exhibit high body temperatures for lizards, whereas forest specialists might be thermoconformers and active at low temperatures. We also compared selected temperatures in the laboratory by species from the two open habitats (Caatingas and Cerrados). Data were analyzed using both conventional and phylogenetic analysis tools. Although species from Caatingas exhibited higher activity temperatures in nature than those from Cerrados, mean selected temperatures were similar between ecological groups. Phylogenetic analyses confirmed these findings and evidenced large␣evolutionary divergence in field activity temperatures between sister species from different␣open habitats without coupled divergence in selected temperatures. Therefore, thermoregulatory behavior and ecological parameters did not evolve similarly during the colonization of contrasting open habitats by Tropidurinae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angilletta MJ Jr, Werner YL (1998) Australian geckos do not display diel variation in thermoregulatory behavior. Copeia 1998:736–742

    Article  Google Scholar 

  • Angilletta MJ Jr, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J␣Therm Biol 27:249–268

    Article  Google Scholar 

  • Angilletta MJ Jr, Wilson RS, Navas CA, James RS (2003) Tradeoffs and the evolution of thermal reaction norms. Trends Ecol Evol 18(5):234–239

    Article  Google Scholar 

  • Autumn K, Farley CT, Emshwiller M, Full RJ (1997) Low cost of locomotion in the banded Gecko: a test of the nocturnality hypothesis. Physiol Zool 70(6):660–669

    PubMed  CAS  Google Scholar 

  • Ballinger RE, Lemos Espinal J, Sanoja-Sarabia S, Coady NR (1995) Ecological observations of the lizard Xenosaurus grandis in Cuautlapan, Veracruz, Mexico. Biotropica 27:128–132

    Article  Google Scholar 

  • Bawens D, Garland T Jr, Castilla AM, Van Damme R (1995) Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution 49(5):848–863

    Article  Google Scholar 

  • Bennett AF (1994) Exercise performance of reptiles. Adv Vet Sci Comp Med 38B:113–138

    PubMed  CAS  Google Scholar 

  • Bergallo HG, Rocha CFD (1993) Activity patterns and body temperatures of two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics in southeastern Brazil. Amphibia-Reptilia 14:312–315

    Google Scholar 

  • Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57(4):717–745

    Article  PubMed  Google Scholar 

  • Bradshaw SD (1986) Ecophysiology of desert reptiles. Academy Press Inc., Orlando, Florida

    Google Scholar 

  • Bradshaw D (2003) Vertebrate ecophysiology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Colli GR, Paiva MS (1997) Estratégias de Forrageamento e Termorregulação em Lagartos do Cerrado e Savanas Amazônicas. In: Contribuição ao conhecimento ecológico do cerrado, pp 224–231. Editora UnB/ECL Brasília, DF

  • Diaz JA (1994) Effects of body temperature on the predatory behavior of the lizard Psammodromus algirus hunting winged and wingless prey. Herpetol J 4(4):145–150

    Google Scholar 

  • Du WG, Yan SJ, Ji X (2000) Selected body temperature, thermal tolerance and thermal dependence of food assimilation and locomotor performance in adult blue-tailed skinks, Eumeces elegans. J Therm Biol 25(3):197–202

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Frost DR, Rodrigues MT, Grant T, Titus TA (2001) Phylogenetics of the lizard genus Tropidurus (Squamata: Tropiduridae: Tropidurinae): direct optimization, descriptive efficiency, and sensitivity analysis of congruence between molecular data and morphology. Mol Phyl Evol 21(3):352–371

    Article  CAS  Google Scholar 

  • Galvão LS, Pizarro MA, Epiphanio JCN (2001) Variations in reflectance of tropical soils: spectral-chemical composition relationships from AVIRIS data. Remote Sens Environ 75(2):245–255

    Article  Google Scholar 

  • Garland T Jr, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155:346–364

    Article  Google Scholar 

  • Garland T Jr, Huey RB, Bennett AF (1991) Phylogeny and coadaptation of thermal physiology in lizards: a reanalysis. Evolution 45:1969–1975

    Article  Google Scholar 

  • Garland T Jr, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41(1):18–32

    Article  Google Scholar 

  • Garland T Jr, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292

    Article  Google Scholar 

  • Garland T Jr, Midford PE, Ives AR (1999) An introduction to phylogenentically based statistical methods, with a new method for confidence intervals on ancestral values. Am Zool 39:374–388

    Google Scholar 

  • Henle K (1992) Predation pressure, food availability, thermal environment, and precision of thermoregulation in a desert population of the skink Morethia boulengeri, with a comment on measuring thermoregulatory precision. Zool J Syst 119:405–412

    Google Scholar 

  • Herczeg G, Kovács T, Hettyey A, Merilä J (2003) To thermoconform or thermoregulate? An assessment of␣the thermoregulation opportunities for the lizard Zootoca vivipara in the subartic. Polar Biol 26:486–490

    Google Scholar 

  • Hertz PE, Huey RB, Nevo E (1983) Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. Evolution 37:1075–1084

    Article  Google Scholar 

  • Howland JM, Vitt LJ, Lopez PT (1990) Life on the edge: the ecology and life history of the tropidurine iguanid lizard Uranoscodon superciliosum. Can J Zool 68:1366–1373

    Article  Google Scholar 

  • Huey RB (1982) Temperature, physiology, and the ecology of reptiles. In: Gans C, Pough FH (eds) Biology of reptilian,vol 12. Academic Press, New York, pp 25–74

    Google Scholar 

  • Huey RB, Bennett AF (1987) Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution 41:1098–1115

    Article  Google Scholar 

  • Huey RB, Niewiarowski PH, Kaufmann J, Herron JC (1989) Thermal biology of nocturnal ectotherms: is sprint performance of geckos maximal at low body temperatures? Physiol Zool 62:488–504

    Google Scholar 

  • Irschick DJ, Losos JB (1999) Do lizards avoid habitats in which performance is submaximal? The relationship between sprinting capabilities and structural habitat use in Caribbean anoles. Am Nat 154:293–305

    Article  PubMed  Google Scholar 

  • Irschick DJ, Garland T Jr (2001) Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annu Rev Ecol Syst 32:367–396

    Article  Google Scholar 

  • Jayne BC, Irschick DJ (2000) Field experiments on incline and preferred speeds for the locomotion of lizards. Ecology 81:2969–2983

    Article  Google Scholar 

  • Ji X, Du WG, Sun PY (1996) Body temperature, thermal tolerance and influence of temperature on sprint␣speed and food assimilation in adult grass lizards, Takydromus septentrionalis. J Therm Biol 21(3):155–161

    Article  Google Scholar 

  • John-Alder HB, Bennett AF (1987) Thermal adaptations in lizard muscle function. J Comp Physiol B 157:241–252

    Article  PubMed  CAS  Google Scholar 

  • Kohlsdorf T, Garland T, Navas CA (2001). Limb and tail lengths in relation to substrate usage in Tropidurus lizards. J Morphol 248:151–164

    Article  PubMed  CAS  Google Scholar 

  • Kohlsdorf T, James RS, Carvalho JE, Wilson RS, Silva MDP, Navas CA (2004). Locomotor performance of closely related Tropidurus species: relationships with physiological parameters and ecological divergence. J Exp Biol 207:1183–1192

    Article  PubMed  Google Scholar 

  • Licht P, Dawson WR, Shoemaker VH, Main AR (1966) Observations on the thermal relations of western Australian lizards. Copeia 1966:97–110

    Article  Google Scholar 

  • Martori R, Aun L (1994) Aspects of the ecology of a population of Tropidurus spinulosus. Amphibia-Reptilia 15:317–326

    Google Scholar 

  • Melville J, Schulte JA II (2001) Correlates of active body temperatures and microhabitat occupation in nine species of central Australian agamid lizards. Austr Ecol 26:660–669

    Article  Google Scholar 

  • Navas CA (2003) Herpetological diversity along Andean elevational gradients: links with physiological ecology and evolutionary physiology. J Comp Biochem Physiol A 133A:469–485

    Google Scholar 

  • Nusier OK, Abu-Hamdeh NH (2003) Laboratory techniques to evaluate thermal conductivity for some soils. Heat Mass Transf 39(2):119–123

    Google Scholar 

  • Pagel MD (1992) A method for the analysis of comparative data. J Theor Biol 156:431–442

    Article  Google Scholar 

  • Pianka ER (1986) Ecology and natural history of desert lizards. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Pough HF, Andrews RM, Cadle JE, Crump ML, Savitzky AH, Wells KD (1998) Herpetology. Prentice-Hall, Inc, New Jersey

    Google Scholar 

  • Purvis A (1995) A composite estimate of primate phylogeny. Phil Trans R Soc Lond B 348:405–421

    CAS  Google Scholar 

  • Putnam RW, Bennett AF (1982) Thermal dependence of isometric contractile properties of lizard muscle. J␣Comp Physiol B 147:11–20

    Article  Google Scholar 

  • Rocha CFD (1995) Thermal ecology of Liolaemus lutzae (Sauria: Tropiduridae) in a Restinga area in Southeastern Brazil. Rev Bras Biol 55:481–489

    Google Scholar 

  • Rocha PLB (1998) Uso e Partição de Recursos pelas Espécies de Lagartos da Dunas do Rio São Francisco, Bahia (Squamata). PhD Thesis. Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo. São Paulo, Brazil

  • Rock J, Andrews RM, Cree A (2000) Effects of reproductive condition, season, and site on selected temperatures of a viviparous gecko. Phys Bioch Zool 73(3):344–355

    Article  CAS  Google Scholar 

  • Rodrigues MTU (1987) Sistemática, Ecologia e Zoogeografia dos Tropidurus do grupo Torquatus ao sul do Rio Amazonas (Sauria, Iguanidae). Arq Zool 31(3):105–230

    Google Scholar 

  • Sinervo B (1990) Evolution of thermal physiology and growth rate between populations of the western fence lizard (Sceloporus occidentalis). Oecologia 83:228–237

    Article  Google Scholar 

  • Sinervo B, Adolph SC (1989) Thermal sensitivity of growth rate in hatchling Sceloporus lizards: environmental, behavioral and genetic aspects. Oecologia 78:411–419

    Article  Google Scholar 

  • Smith GR, Ballinger RE (1994) Thermal ecology of Sceloporus virgatus from Southeastern Arizona, with comparison to Urosaurus ornatus. J Herpetol 28:65–69

    Article  Google Scholar 

  • Smith GR, Ballinger RE, Congdon JD (1993) Thermal ecology of the high-altitude bunch grass lizard, Sceloporus scalaris. Can J Zool 71:2152–2155

    Article  Google Scholar 

  • Souzareis ACD (1976) Climate of Caatinga. An Acad Bras Cien 48:325–335

    Google Scholar 

  • Tanaka S (1986) Thermal ecology of the forest-dwelling agamid lizard Japalura polygonata. J Herpetol 20:333–340

    Article  Google Scholar 

  • Tu M, Hutchison VH (1994) Influence of pregnancy on thermoregulation of water snakes (Nerodia rhombifera). J Therm Biol 19(4):255–259

    Article  Google Scholar 

  • Vitt LJ (1991a) An Introduction to the ecology of Cerrado lizards. J Herpetol 25(1):79–90

    Article  Google Scholar 

  • Vitt LJ (1991b) Ecology and life history of the scansorial arboreal lizard Plica plica (Iguanidae) in Amazonian Brazil. Can J Zool 69:504–511

    Google Scholar 

  • Vitt LJ (1995) The ecology of tropical lizards in the caatinga of northeast Brazil. Oc Pap Okl Mus Nat Hist 1:1–29

    Google Scholar 

  • Vitt LJ, Zani PA (1996) Ecology of the elusive tropical lizard Tropidurus (=Uracentron) flaviceps (Tropiduridae) in lowland rain forest of Equador. Herpetologica 52:121–132

    Google Scholar 

  • Vitt LJ, Zani PA, Avila-Pires TCS (1997) Ecology of the arboreal tropidurid lizard Tropidurus (equals Plica) umbra in the Amazon region. Can J Zool 75:1876–1882

    Google Scholar 

  • Vitt LJ, Caldwell JP, Sartorius SS, Cooper WE Jr, Baird TA, Baird TD, Perez-Mellado V (2005) Pushing the edge: extended activity as an alternative to risky body temperatures in a herbivorous teiid lizard (Cemidophorus murinus: Squamata). Funct Ecol 19:152–158

    Article  Google Scholar 

  • Wine RN, Gatten RE (1992) Glycolytic support for locomotion in Anolis carolinensis and Rana pipiens—Simultaneous effects of temperature and duration of exercise. Physiol Zool 65(4):724–741

    CAS  Google Scholar 

Download references

Acknowledgements

TK was supported by a FAPESP Doctoral Fellowship (00/06662-5), and CAN was supported by FAPESP research grants (95/11542-7 and 03/01577-8). We thank to DS Zamboni, RB Nunes, GR Colli, MTU Rodrigues, PLB Rocha, C Godoy, AK Péres, RA Brandão, DO Mesquita, HC Wiederhecker, N Kohlsdorf, RC Gomes and Y. Yassuda’s students for field assistance or donation of live specimens. We also thank M Angilletta and two anonymous reviewers for valuable comments on this manuscript. Animals were collected under IBAMA permission number 022/02-RAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Navas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohlsdorf, T., Navas, C.A. Ecological constraints on the evolutionary association between field and preferred temperatures in Tropidurinae lizards. Evol Ecol 20, 549–564 (2006). https://doi.org/10.1007/s10682-006-9116-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-006-9116-x

Keywords

Navigation