Skip to main content
Log in

Identification of a stripe rust resistance gene in Chinese wheat line Shaannong69 using bulked-segregant sequencing

  • Research
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating fungal disease, leading to huge yield losses in wheat production. Identification of resistance genes and closely linked molecular markers can greatly facilitate breeding resistant wheat cultivars. Shaannong69 conferred high resistance to stripe rust both at the seedling and adult-plant stages. The Pst race CYR31 was used to infect Shaannong69, Huixianhong, F1 and F2 plants and F2:3 lines at the seedling stage in the greenhouse. Genetic analysis identified a single dominant gene, designated as YrSN69, conferring resistance to Pst race CYR31 in Shaannong69. Seventy-four of 176 SNPs with the absolute value of ∆SNP-index more than 0.85 were identified in 753.33–766.18 Mb on chromosome 2BL based on bulked segregant RNA sequencing. Fifteen kompetitive allele-specific PCR markers were developed to genotype susceptible F2 plants derived from the Shaannong69/Huixianhong cross. YrSN69 was mapped on chromosome arm 2BL in a 2.0 cM genetic interval, with genetic distances of 0.2 cM and 1.8 cM to markers 2BC17 and 2BA20, respectively, corresponding to a 3.16 Mb physical region based on the IWGSC RefSeq v1.1 with 44 high-confidence annotated genes. The YrSN69 is likely to be a new allele of Yr72 in comparison with known Yr genes on chromosome 2BL. These results provide a solid foundation for map-based cloning of YrSN69 and marker-assisted selection for pyramiding stripe rust resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Aravind L (2000) The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem Sci 25:421–423

    Article  CAS  PubMed  Google Scholar 

  • Avni R, Nave M, Barad O et al (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–96

    Article  CAS  PubMed  Google Scholar 

  • Baranwal DK (2021) Molecular mapping of rust resistance and genome-wide association study for grain mineral concentration in wheat. PhD thesis, University of Sydney Australia

  • Baranwal DK, Bariana H, Bansal U (2021) Genetic dissection of stripe rust resistance in a Tunisian wheat landrace Aus26670. Mol Breeding 41:54

    Article  CAS  Google Scholar 

  • Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhou Y, Chen Y et al (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:884–890

    Article  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust Puccinia striiformis f. sp. tritici on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Chen XM (2014) Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Can J Plant Pathol 36:311–326

    Article  CAS  Google Scholar 

  • Cheng P, Chen XM (2010) Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s. Theor Appl Genet 121:195–204

    Article  CAS  PubMed  Google Scholar 

  • Chhetri M (2015) Molecular mapping and genetic characterization of rust resistance in wheat. PhD thesis, University of Sydney Australia

  • Choulet F, Wicker T, Rustenholz C et al (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22:1686–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong CH, Zhang LC, Chen ZX et al (2020) Combining a new exome capture panel with an effective varBScore algorithm accelerates BSA-based gene cloning in wheat. Front Plant Sci 11:1249

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng J, Wang M, See DR et al (2018) Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103. Phytopathology 108:737–747

    Article  CAS  PubMed  Google Scholar 

  • Fu DL, Uauy C, Distelfeld A et al (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gessese M, Bariana H, Wong D et al (2019) Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant Dis 103:1166–1171

    Article  CAS  PubMed  Google Scholar 

  • Guo WL, Xin MM, Wang ZH et al (2020) Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nature Commun 11:5085

    Article  CAS  Google Scholar 

  • Helguera M, Khan IA, Kolmer J et al (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847

    Article  CAS  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Article  Google Scholar 

  • Klymiuk V, Chawla HS, Wiebe K et al (2022) Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Commun Biol 5:826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Dundas I, Dong C et al (2020) Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor Appl Genet 133:1095–1107

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Lin RM, Hu JH et al (2022) Mapping of wheat stripe rust resistance gene Yr041133 by BSR-Seq analysis. Crop J 10:447–455

    Article  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with Mapmaker/eXP3.0. Whitehead Institute Techn rep, 3rd edn. Whitehead Institute, Cambridge

  • Line RF (2002) Stripe rust of wheat and barley in North America: a retrospective historical review. Annu Rev Phytopathol 40:75–118

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Bowden RL, Bai GH (2013) Molecular markers for leaf rust resistance gene Lr42 in wheat. Crop Sci 53:1566–1570

    Article  Google Scholar 

  • Maccaferri M, Harris NS, Twardziok SO et al (2019) Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet 51:885–895

    Article  CAS  PubMed  Google Scholar 

  • Marchal C, Zhang J, Zhang P et al (2018) BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants 4:662–668

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ et al (2017) Catalogue of gene symbols for wheat. https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf. Accessed 6 Dec 2019

  • McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan C et al (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498

    Article  CAS  PubMed  Google Scholar 

  • Nsabiyera V, Bariana HS, Qureshi N et al (2018) Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284. Theor Appl Genet 131:1459–1467

    Article  CAS  PubMed  Google Scholar 

  • Pakeerathan K, Bariana H, Qureshi N et al (2019) Identification of a new source of stripe rust resistance Yr82 in wheat. Theor Appl Genet 132:3169–3176

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Gonzalez RH, Uauy C, Caccamo M (2015) PolyMarker: a fast polyploid primer design pipeline. Bioinformatics 31:2038–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y (2012) Molecular mapping of stripe rust resistance genes in common wheat. PhD thesis, Chinese Academy of Agricultural Science

  • Sato K, Abe F, Mascher M et al (2021) Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder.’ DNA Res 28:dsa008

    Article  Google Scholar 

  • Sui XX, Wang MN, Chen XM (2009) Molecular mapping of a stripe rust resistance gene in spring wheat cultivar Zak. Phytopathology 99:1209–1215

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Abe A, Yoshida K et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Trick M, Adamski NM, Mugford SG et al (2012) Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol 12:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Walkowiak S, Gao L, Monat C et al (2020) Multiple wheat genomes reveal global variation in modern breeding. Nature 588:277–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang HZ, Xie JZ et al (2017) Mapping stripe rust resistance genes by BSR-Seq: YrMM58 and YrHY1 on chromosome 2AS in Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17. Crop J 6:91–98

    Article  Google Scholar 

  • Wang ZZ, Li HW, Zhang DY et al (2015) Genetic and physical mapping of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou. Theor Appl Genet 128:365–373

    Article  CAS  PubMed  Google Scholar 

  • Wu JH, Wang XT, Chen N et al (2020a) Association analysis identifies new loci for resistance to Chinese Yr26-virulent races of the stripe rust pathogen in a diverse panel of wheat germplasm. Plant Dis 104:1751–1762

    Article  CAS  PubMed  Google Scholar 

  • Wu YY, Li M, He ZH et al (2020b) Development and validation of high-throughput and low-cost STARP assays for genes underpinning economically important traits in wheat. Theor Appl Genet 133:2431–2450

    Article  CAS  PubMed  Google Scholar 

  • Xie JZ (2016) Establishment and application of BSR-Seq for gene mapping in wheatand sequence analysis of Aegilops tauschii chromosome arm 3DS. PhD thesis, Chinese Academy of Sciences

  • Xie JZ, Guo GH, Wang Y et al (2020) A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol 228:1011–1026

    Article  CAS  PubMed  Google Scholar 

  • Xu LS, Wang MN, Cheng P et al (2013) Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theor Appl Genet 126:523–533

    Article  CAS  PubMed  Google Scholar 

  • Yuan C, Jiang H, Wang H et al (2012) Distribution, frequency and variation of stripe rust resistance loci Yr10, Lr34/Yr18 and Yr36 in Chinese wheat cultivars. J Genet Genomics 39:587–592

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Huang L, Zhang H et al (2019) An ancestral NB-LRR with duplicated 3’UTRs confers stripe rust resistance in wheat and barley. Nat Commun 10:4023

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang PP, Guo GH, Wu QH et al (2020) Identification and fine mapping of spot blotch (Bipolaris sorokiniana) resistance gene Sb4 in wheat. Theor Appl Genet 133:2451–2459

    Article  CAS  PubMed  Google Scholar 

  • Zhou SH (2016) QTL mapping and BSR-Seq analysis for agronomic traits in wheat RIL population Yanda1817×Beinong6. PhD thesis, China Agricultural University

  • Zhu ZW, Cao Q, Han DJ et al (2023) Molecular characterization and validation of adult-plant stripe rust resistance gene Yr86 in Chinese wheat cultivar Zhongmai 895. Theor Appl Genet 136:142–150

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (32360503), National Key Research and Development Program of China (2022YFD1201500), Science and Technology Partnership Program, Ministry of Science and Technology of China (KY202201001), Key Research and Development Program of Ningxia (2023BCF01011), and Natural Science Foundation of Ningxia Province (2023AAC05050).

Author information

Authors and Affiliations

Authors

Contributions

Yan Dong performed the experiment and data analysis, and wrote the paper. Yachao Dong, Yuying Wu, Jingchun Wu contributed to scoring stripe rust in greenhouse. Ling Wu and Bin Bai participated in field trials. Dengan Xu contributed to BSR-Seq analysis. Fengju Wang constructed the mapping population. Jianhui Wu provided Pst races. Yukun Cheng, Yuanfeng Hao, Zhonghu He, Xianchun Xia and Dongsheng Chen designed the experiment and/or assisted in writing the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dongsheng Chen or Xianchun Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

We declare no relevant financial or non-financial conflicts of interest in regards to this manuscript.

Ethical approval

These experiments complied with the ethical standards in China.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1799 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Dong, Y., Wu, L. et al. Identification of a stripe rust resistance gene in Chinese wheat line Shaannong69 using bulked-segregant sequencing. Euphytica 220, 88 (2024). https://doi.org/10.1007/s10681-024-03340-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-024-03340-3

Keywords

Navigation