Skip to main content
Log in

Dissecting the inheritance pattern of the anemone flower type and tubular floral traits of chrysanthemum in segregating F1 populations

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The anemone type, featuring prominent and colored in tubular florets, is an attractive flower shape in chrysanthemums and, thus, desired by breeders and consumers. Understanding the genetic basis of anemone type flowers in chrysanthemum is crucial for breeding success. The current study conducted nine cross combinations from seven parents to investigate segregation patterns, parental effect, and the relationships between the heterosis of six tubular floral traits and parental genetic distance. Significant (P < 0.05) differences among the parents and crosses in various tubular floral traits and transgressive segregation was observed in both directions for most traits. The broad-sense heritability of the tubular floral traits varied from h 2B

 = 0.47 to 0.92 across different crosses. The considerable variation occurred for almost floral traits, thus indicating the substantial potential for selecting lines with the desirable traits. The segregation ratio of anemone to non-anemone followed 3:1 in anemone × anemone crosses and 1:3 in either non-anemone × anemone or anemone × non-anemone crosses, except for two reciprocal crosses derived from the parents ‘Nannong Xuefeng’ and ‘QX096’. The F1 hybrids’ performance was more inclined towards a vulnerable parent and involved less influence of maternal or paternal effects, displaying some extended declines and negative mid-parent heterosis (MPH). The phenotypic genetic distance was significantly negatively correlated with MPH for floral traits except for style length and disk flower diameter. In contrast, we observed no significant correlation between molecular marker-based genetic distance and MPH for all floral characteristics. The findings of the current work provide insights into the complex inheritance pattern of flower types and help achieve desirable improvement in anemone type chrysanthemums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amuzu-Aweh EN, Bijma P, Kinghorn BP, Vereijken A, Visscher J, van Arendonk JA, Bovenhuis H (2013) Prediction of heterosis using genome-wide SNP-marker data: application to egg production traits in white Leghorn crosses. Heredity 111(6):530–538

    Article  CAS  Google Scholar 

  • Anderson NO (2006) Chrysanthemum: Dendranthema × grandiflora Tzvelv. Flower breeding and genetics: issues, challenges and opportunities for the 21st century. pp 389-437

  • Anderson NO, Ascher PD (2000) Fertility changes in inbred families of self-incompatible chrysanthemums (Dendranthema grandiflora). J Amer Soc Hort Sci 125(5):619–625

    Article  Google Scholar 

  • Badyaev AV (2013) Maternal inheritance. Brenners Encyclopedia of Genetics 317(5):320–322

    Article  Google Scholar 

  • Buti M, Giordani T, Vukich M, Pugliesi C, Natali L, Cavallini A (2013) Retrotransposon-related genetic distance and hybrid performance in sunflower (Helianthus annuus L.). Euphytica 192:289–303

    Article  CAS  Google Scholar 

  • Chandnani R, Zhang Z, Patel JD, Adhikari J, Khanal S, He D, Brown N, Chee PW, Paterson AH (2017) Comparative genetic variation of fiber quality traits in reciprocal advanced backcross populations. Euphytica 213:241

    Article  Google Scholar 

  • Chen F, Jiang J, Guo W (2003) Heredity of several flower characters in Dendranthema grandiflora with small inflorescences. Acta Hort Sin 30(2):175–182

    Google Scholar 

  • Chen FD, Li FT, Chen SM, Guan ZY, Fang WM (2009) Meiosis and pollen germinability in small-flowered anemone type chrysanthemum cultivars. Plant Syst Evol 280(3):143–151

    Article  Google Scholar 

  • Chen XD, Sun DF, Rong DF, Sun GL, Peng JH (2010) Relationship of genetic distance and hybrid performance in hybrids derived from a new photoperiod-thermo sensitive male sterile wheat line 337S. Euphytica 175:365–371

    Article  CAS  Google Scholar 

  • Chong X, Su J, Wang F, Wang H, Song A, Guan Z, Fang W, Jiang J, Chen S, Chen F, Zhang F (2019) Identification of favorable SNP alleles and candidate genes responsible for inflorescence-related traits via GWAS in chrysanthemum. Plant Mol Biol 99(4–5):407–420

    Article  CAS  Google Scholar 

  • Chong X, Zhang F, Wu Y, Yang X, Zhao N, Wang H, Guan Z, Fang W, Chen F (2017) A SNP-enabled assessment of genetic diversity, evolutionary relationships and the identification of candidate genes in chrysanthemum. Genome Biol Evol 8(12):3661–3671

    Google Scholar 

  • Cvejiä S, Jociä S, Mladenoviä E (2016) Inheritance of floral colour and type in four new inbred lines of ornamental sunflower (Helianthus annuus L.). J Hortic Sci Biotech 91(1):30–35

    Article  Google Scholar 

  • Dejong J, Drennan DL (1984) Genetic analysis in Chrysanthemum morifolium. II. Flower doubleness and ray floret corolla splitting. Euphytica 33(2):465–470

    Article  Google Scholar 

  • Devi P, Singh NK (2011) Heterosis, molecular diversity, combining ability and their inter-relationships in short duration maize (Zea mays L.) across the environments. Euphytica 178:71–81

    Article  Google Scholar 

  • Espósito MA, Bermejo C, Gatti I, Guindón MF, Cravero V, Cointry EL (2014) Prediction of heterotic crosses for yield in Pisum sativum L. Sci Hortic 177:53–62

    Article  Google Scholar 

  • Ferfuia C, Vannozzi GP (2015) Maternal effect on seed fatty acid composition in a reciprocal cross of high oleic sunflower (Helianthus annuus L.). Euphytica 205(2):325–336

    Article  CAS  Google Scholar 

  • Frisch M, Thiemann A, Fu J, Schrag TA, Scholten S, MelchingerAE (2010) Transcriptome-based distance measures for grouping of germplasm and prediction of hybrid performance in maize. Theor Appl Genet 120:441–450

    Article  CAS  Google Scholar 

  • Geleta LF, Labuschagne MT, Viljoen CD (2004) Relationship between heterosis and genetic distance based on morphological traits and AFLP markers in pepper. Plant Breeding 123:467–473

    Article  CAS  Google Scholar 

  • Gilsinger JJ, Burton JW, Carter TE Jr (2010) Maternal effects on fatty acid composition of soybean seed oil. Crop Sci 50:1874–1881

    Article  CAS  Google Scholar 

  • Giraud H, Bauland C, Falque M, Madur D, Combes V, Jamin P, Monteil C, Laborde J, Palaffre C, Gaillard A, Blanchard P, Charcosset A, Moreau L (2017) Reciprocal Genetics: identifying QTL for general and specific combining abilities in hybrids between multiparental populations from two maize (Zea mays L.) heterotic groups. Genetics 207(3):1167–1180

    Article  CAS  Google Scholar 

  • Golkar P, Arzani A, Rezaei AM (2010) Inheritance of flower colour and spinelessness in safflower (Carthamus tinctorius L.). J Genet 89(2):259–262

    Article  CAS  Google Scholar 

  • Gupta SK, Nepolean T, Shaikh CG, Rai K, Hash CT, Das RR, Rathore A (2018) Phenotypic and molecular diversity-based prediction of heterosis in pearl millet (Pennisetum glaucum L. (R.) Br.). Crop J 6:271–281

    Article  Google Scholar 

  • Hoyle RB, Ezard THG (2012) The benefits of maternal effects in novel and in stable environments. J R Soc Interface 9(75):2403–2413

    Article  Google Scholar 

  • Huang M, Chen LY, Chen ZQ (2015) Diallel analysis of combining ability and heterosis for yield and yield components in rice by using positive loci. Euphytica 205:37–50

    Article  CAS  Google Scholar 

  • Jassem M, ´ liwin´ska E, Pilarczyk W (2000) Maternal inheritance of sugar concentration. J Sugar Beet Res 37:41–53

    Article  Google Scholar 

  • Jiang Y, Schmidt RH, Zhao Y, Reif JC (2017) A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat Genet 49(12):1741–1746

    Article  CAS  Google Scholar 

  • Kuijper B, Hoyle RB (2015) When to rely on maternal effects and when on phenotypic plasticity? Evolution 69(4):950–968

    Article  Google Scholar 

  • Kulkarni RN, Baskaran K, Sreevalli Y (2005) Genetics of novel corolla colours in periwinkle. Euphytica 144(1–2):101–107

    Article  Google Scholar 

  • Lande R, Kirkpatrick M (1990) Selection response in traits with maternal inheritance. Genet Res 55(3):189–197

    Article  CAS  Google Scholar 

  • Li FT, Chen SM, Chen FD, Fang WM, Liu ZL, Zhang F (2010) Histological structure observation on the floral development of anemone-typed chrysanthemum. Acta Hortic Sin 37(12):1961–1968

    Google Scholar 

  • Li H, Shao J (1990) Investigation, collection and classification of chrysanthemum cultivars in China. J Nanjing Agric Univ 13(1):30–36

    Google Scholar 

  • Li X, Chen F, Zhang F, Chen S, Guan Z, Fang W (2021) Comprehensive evaluation of ornamental traits and selection of pompon type cut chrysanthemum. Acta Hortic Sin 48(1):107–116

    Google Scholar 

  • Lim JH, Shim MS, Sim S-C, Oh KH, Seo JY (2014) Genetic variation of flower characteristics in a population derived from a cross between the chrysanthemum cultivars ‘Falcao’ and ‘Frill Green’. Hortic Environ Biote 55(4):322–328

    Article  CAS  Google Scholar 

  • Liu C, He Y, Gou T, Li X, Ning G, Bao M (2016) Identification of molecular markers associated with the double flower traits in Petunia hybrida. Sci Hortic 206:43–50

    Article  CAS  Google Scholar 

  • Liu L, Chen CX, Zhu YF, Xue L, Liu QW, Qi KJ, Zhang SL, Wu J (2016) Maternal inheritance has impact on organic acid content in progeny of pear (Pyrus spp.) fruit. Euphytica 209(2):305–321

    Article  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2):209–220

    CAS  Google Scholar 

  • Meng G, Zhu G, Fang W, Chen C, Wang X, Wang L, Cao K (2019) Identification of loci for single/double flower trait by combining genome-wide association analysis and bulked segregant analysis in peach (Prunus persica). Plant Breeding 138(3):360–367

    Article  CAS  Google Scholar 

  • Nakatsuka T, Koishi K (2018) Molecular characterization of a double-flower mutation in Matthiola incana. Plant Sci 268:39–46

    Article  CAS  Google Scholar 

  • Ndhlela T, Herselman L, Semagn K, Magorokosho C, Mutimaamba C, Labuschagne MT (2015) Relationships between heterosis, genetic distances and specific combining ability among CIMMYT and Zimbabwe developed maize inbred lines under stress and optimal conditions. Euphytica 204:635–647

    Article  CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nimura M, Kato J, Mii M, Ohishi K (2008) Cross-compatibility and the polyploidy of progenies in reciprocal backcrosses between diploid carnation (Dianthus caryophyllus L.) and its amphidiploid with Dianthus japonicus Thunb. Sci Hortic 115(2):183–189

    Article  Google Scholar 

  • R Core Team (2013) R: a language and Environment for Statistical Computing. R Foundation for Statistical Computing. (Vienna)

  • Riday H, Brummer CE, Campbell A, Luth D, Cazcarro PM (2003) Comparisons of genetic and morphological distances with heterosis between Medicago stiva subsp. Sativa and subsp. falactas. Euphytica 131:37–45

    Article  CAS  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc version 2.2: numerical taxonomy and multivariate analysis system. Exeter Software

  • Sang SF, Wang H, Mei DS, Liu J, Fu L, Wang J, Wang WX, Hu Q (2015) Correlation analysis between heterosis and genetic distance evaluated by genome-wide SNP chip in Brassica napus. Sci Agric Sin 48(12):2469–2478

    CAS  Google Scholar 

  • Song X, Zhao X, Fan G, Gao K, Dai S, Zhang M, Ma C, Wu X (2018) Genetic analysis of the corolla tube merged degree and the relative number of ray florets in chrysanthemum (Chrysanthemum × morifolium Ramat.). Sci Hortic 242:214–224

    Article  CAS  Google Scholar 

  • Su J, Yang X, Zhang F, Wu S, Xiong S, Shi L, Guan Z, Fang W, Chen F (2018) Dynamic and epistatic QTL mapping reveals the complex genetic architecture of waterlogging tolerance in chrysanthemum. Planta 247(4):899–924

    Article  CAS  Google Scholar 

  • Su J, Zhang F, Li P, Guan Z, Fang W, Chen F (2016) Genetic variation and association mapping of waterlogging tolerance in chrysanthemum. Planta 244(6):1241–1252

    Article  CAS  Google Scholar 

  • Su J, Zhang F, Yang X, Feng Y, Yang X, Wu Y, Guan Z, Fang W, Chen F (2017) Combining ability, heterosis, genetic distance and their intercorrelations for waterlogging tolerance traits in chrysanthemum. Euphytica 213:42

    Article  Google Scholar 

  • Tang F, Chen F, Chen S, Teng N, Fang W (2009) Intergeneric hybridization and relationship of genera within the tribe Anthemideae Cass. (I. Dendranthema crassum (kitam.) Kitam. × crossostephium chinense (L.) Makino). Euphytica 169:133–140

    Article  CAS  Google Scholar 

  • Tang HQ, Zhang F, Chen FD, Fang WM, Wang CC, Chen SM (2015) Heterosis and mixed genetic analysis of inflorescence traits of anemone-typed chrysanthemum. Acta Hort Sin 42(5):907–916

    Google Scholar 

  • Tasaki K, Higuchi A, Fujita K, Watanabe A, Sasaki N, Fujiwara K, Abe H, Naito Z, Takahashi R, Hikage T, Nishihara M (2017) Development of molecular markers for breeding of double flowers in japanese gentian. Mol Breed 37:33

    Article  Google Scholar 

  • Tian HY, Channa SA, Hu SW (2017) Relationships between genetic distance, combining ability and heterosis in rapeseed (Brassica napus L.). Euphytica 213:1

    Article  CAS  Google Scholar 

  • Viana JMS, Risso LA, Oliveira DeLima R, Fonseca E, Silva F (2021) Factors affecting heterotic grouping with cross-pollinating crops. Agron J 113(1):210–223

    Article  CAS  Google Scholar 

  • Wang Q, Zhang X, Lin S, Yang S, Yan X, Bendahmane M, Bao M, Fu X (2020) Mapping a double flower phenotype-associated gene DcAP2L in Dianthus chinensis. J Exp Bot 71(6):1915–1927

    Article  CAS  Google Scholar 

  • Wegary D, Vivek B, Labuschagne M (2013) Association of parental genetic distance with heterosis and specific combining ability in quality protein maize. Euphytica 191(2):205–216

    Article  Google Scholar 

  • Wu BH, Zhao JB, Chen J, Xi HF, Jiang Q, Li SH (2012) Maternal inheritance of sugars and acids in peach (P. persica (L.) Batsch) fruit. Euphytica 188(3):333–345

    Article  CAS  Google Scholar 

  • Yagi M, Yamamoto T, Isobe S, Tabata S, Hirakawa H, Yamaguchi H, Tanase K, Onozaki T (2014) Identification of tightly linked SSR markers for flower type in carnation (Dianthus caryophyllus L.). Euphytica 198(2):175–183

    Article  CAS  Google Scholar 

  • Yang X, Wu Y, Su J, Ao N, Guan Z, Jiang J, Chen S, Fang W, Chen F, Zhang F (2019a) Genetic variation and development of a SCAR marker of anemone-type flower in chrysanthemum. Mol Breed 39:48

    Article  Google Scholar 

  • Yang X, Fang X, Su J, Ding L, Guan Z, Jiang J, Chen S, Chen F, Fang W, Zhang F (2019b) Genetic dissection of floral traits in anemone type chrysanthemum via QTL mapping. Mol Breed 39:136

    Article  CAS  Google Scholar 

  • Yang Y, Wen C, Ma N, Zhao L (2015) Heterosis and genetic analysis of branching in cut-flower chrysanthemums. Euphytica 205(3):915–925

    Article  CAS  Google Scholar 

  • Yao J, Li H, Ye J, Shi L (2015) Relationship between parental genetic distance and offspring’s heterosis for early growth traits in Liriodendron: implication for parent pair selection in cross breeding. New For 47(1):163–177

    Article  Google Scholar 

  • Yue L, Zhang S, Zhang L, Liu Y, Cheng F, Li G, Zhang S, Zhang H, Sun R, Li F (2022) Heterotic prediction of hybrid performance based on genome-wide SNP markers and the phenotype of parental inbred lines in heading chinese cabbage (Brassica rapa L. ssp. pekinensis). Sci Hortic 296:110907

    Article  CAS  Google Scholar 

  • Zawadi M, Sibiya J, Mashingaidze K, Amelework AB, Musvosvi C (2020) Molecular characterization and diversity analysis of selected maize inbred lines using single-nucleotide polymorphism markers. Can J Plant Sci 101(2):240–248

    Article  Google Scholar 

  • Zhang F, Chen S, Chen F, Fang W, Deng Y, Chang Q, Liu P (2011) Genetic analysis and associated SRAP markers for flowering traits of chrysanthemum (Chrysanthemum morifolium). Euphytica 177:15–24

    Article  CAS  Google Scholar 

  • Zhang F, Chen S, Chen F, Fang W, Li F (2010) A preliminary genetic linkage map of chrysanthemum (Chrysanthemum morifolium) cultivars using RAPD, ISSR and AFLP markers. Sci Hortic 125:422–428

    Article  CAS  Google Scholar 

  • Zhu WY, Liu XC, Fang WM, Guan ZY, Chen SM, Jiang JF, Chen FD (2012) Genetic presentation of BC1 between ‘Zhongshanjingui’ and ‘Zhongshanjingui’ × Ajania przewalskii. Sci Agric Sin 45(18):3812–3819

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (2022YFD1200500), the National Natural Science Foundation of China (31370699), the China Agriculture Research System (CARS-23-A18), and the earmarked fund for Jiangsu Agricultural Industry Technology System (JATS[2022]459).

Author information

Authors and Affiliations

Authors

Contributions

FZ and WF conceived and designed the project, FC, JJ, and ZG provided the materials, XY, JS, and YQ conducted experiments, XY and FZ analyzed the data and wrote the manuscript. All authors read and agreed to the submitted version of the manuscript.

Corresponding author

Correspondence to Fei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

10681_2022_3141_MOESM1_ESM.docx

Table S1 Estimates of genetic distances based on phenotypic (upper diagonal) and single nucleotide polymorphism (SNPs) (lower diagonal) data for all pairwise combinations of seven parental genotypes (DOCX 14 kb)

Fig. S1 Box-plot showed the genetic variation of six floral traits in three pairs of reciprocal crosses (TIF 4409 kb)

10681_2022_3141_MOESM3_ESM.tif

Fig. S2 UPGMA dendrogram of seven parental chrysanthemum cultivars based on morphology traits (A) and SNPs marker (B) (TIF 797 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Su, J., Qu, Y. et al. Dissecting the inheritance pattern of the anemone flower type and tubular floral traits of chrysanthemum in segregating F1 populations. Euphytica 219, 16 (2023). https://doi.org/10.1007/s10681-022-03141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-022-03141-6

Keywords

Navigation