Skip to main content

Advertisement

Log in

Marker-assisted introgression of bacterial blight resistance gene xa13 into improved CO43

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Biotic stresses cause severe yield reductions in rice and are a threat to global food security. Developing resistant cultivars is the most affordable and sustainable approach to handling different biotic stresses. CO43 is an elite rice variety of Tamil Nadu susceptible to gall midge (GM) and bacterial blight (BB). In this regard, the current research was carried out to pyramid a major BB resistance gene xa13 into the background of the improved CO43 carrying two major genes for GM resistance Gm1 and Gm4. The improved CO43 was crossed with the donor line B95-1 X Abhaya, carrying the BB resistance gene xa13 and GM resistance gene Gm4. Marker-assisted backcross breeding was employed to develop three gene-pyramided homozygous BC3F3 lines (Gm1Gm1 + Gm4Gm4 + xa13xa13). Foreground selection was done at every generation using the functional marker xa13-prom for selecting the xa13 gene and the SSR markers RM1328 and RM22550 for targeting the Gm1 and Gm4 genes, respectively. The selected BC3F3 lines were highly resistant to GM and BB. Agronomical and grain quality evaluation of the selected lines led to the identification of two lines, C39-24-11 and C39-24-127 having yield on par with the improved CO43. The selected lines will be further pyramided with additional BB and blast resistance genes to develop improved lines with durable resistance against multiple biotic stresses of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abhilash Kumar V, Balachiranjeevi CH, Naik SB, Rekha G, Rambabu R, Harika G, Pranathi K, Hajira SK, Anila M, Kousik M, Kale R, Dilip Kumar T, Prasad MS, Hari Prasad AS, Padmakumari AP, Laha GS, Balachandran SM, Madhav MS, Senguttuvel P, Kemparajau KB, Fiyaz AR, Bentur JS, Viraktamath BC, Ravindra Babu V, Sundaram RM (2017) Marker-assisted pyramiding of bacterial blight and gall midge resistance genes into RPHR-1005, the restorer line of the popular rice hybrid DRRH-3. Mol Breed 37(7):86. https://doi.org/10.1007/s11032-017-0687-8

    Article  CAS  Google Scholar 

  • Antony G, Zhou J, Huang S, Li T, Liu B, White F, Yang B (2010) Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22:3864–3876. https://doi.org/10.1105/tpc.110.078964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker RF, Leach KA, Braun DM (2012) SWEET as sugar: new sucrose effluxers in plants. Mol Plant 5:766–768. https://doi.org/10.1093/mp/sss054

    Article  CAS  PubMed  Google Scholar 

  • Baliyan N, Malik R, Rani R, Mehta K, Vashisth U, Dhillon S, Boora KS (2018) Integrating marker-assisted background analysis with foreground selection for pyramiding bacterial blight resistance genes into Basmati rice. CR Biol 341(1):1–8. https://doi.org/10.1016/j.crvi.2017.11.003

    Article  Google Scholar 

  • Bandumula N (2018) Rice production in Asia: key to global food security. Proc Natl Acad Sci India Sect B Biol Sci 88(4):1323–1328. https://doi.org/10.1007/s40011-017-0867-7

    Article  Google Scholar 

  • Bentur JS, Pasalu IC, Sharma NP, Prasada Rao U, Mishra B (2003) Gall midge resistance in rice: current status in India and future strategies. DRR Research Paper Series 01/2003. Directorate of Rice Research, Rajendranagar, Hyderabad, p 20

  • Bentur JS, Rawat N, Divya D, Sinha DK, Agarrwal R, Atray I, Nair S (2016) Rice-gall midge interactions: battle for survival. J Insect Physiol 84:40–49. https://doi.org/10.1016/j.jinsphys.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  • Calicioglu O, Flammini A, Bracco S, Bellu L, Sims R (2019) The future challenges of food and agriculture: an integrated analysis of trends and solutions. Sustainability 11(1):222

    Article  Google Scholar 

  • Chaudhary PS, Shrivastava PS, Shrivastava MN, Khush GS (1985) Inheritance of resistance of gall midge in some cultivars of rice. In: Rice genetics. International Rice Research Institute, Los Banos, pp 523–528

  • Chen S, Lin XH, Xu CG, Zhang Q (2000) Improvement of bacterial blight resistance of Minghui 63, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Sci 40:239–244. https://doi.org/10.2135/cropsci2000.401239x

    Article  Google Scholar 

  • Chen S, Wang C, Yang J, Chen B, Wang W, Su J, Zhu X (2020) Identification of the novel bacterial blight resistance gene Xa46 (t) by mapping and expression analysis of the rice mutant H120. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-69639-y

    Article  CAS  Google Scholar 

  • Chen X, Liu P, Mei L, He X, Chen L, Liu H, Shen S, Ji Z, Zheng X, Zhang Y, Gao Z (2021) Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. Plant Commun 2(3):100143. https://doi.org/10.1016/j.xplc.2021.100143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Z, Ouyang Y, Zhang J, Yang H, Wang S (2004) Genome-wide analysis of defense responsive genes in bacterial blight resistance of rice mediated by a recessive R gene, xa13. Mol Gen Genomics 271(1):111–120. https://doi.org/10.1007/s00438-003-0964-6

    Article  CAS  Google Scholar 

  • Chu Z, Fu B, Yang H, Xu C, Li Z, Sanchez A, Park YJ, Bennetzen JL, Zhang Q, Wang S (2006) Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor Appl Genet 112:455–461. https://doi.org/10.1007/s00122-005-0145-6

    Article  CAS  PubMed  Google Scholar 

  • Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Oladosu Y, Kolapo K, Musa I, Halidu J, Muhammad I, Ahmed M (2020) Marker-assisted introgression of multiple resistance genes confers broad spectrum resistance against bacterial leaf blight and blast diseases in Putra-1 rice variety. Agronomy 10(1):42. https://doi.org/10.3390/agronomy10010042

    Article  CAS  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363(1491):557–572

    Article  CAS  Google Scholar 

  • Das G, Rao GJN (2015) Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front Plant Sci 6:698. https://doi.org/10.3389/fpls.2015.00698

    Article  PubMed  PubMed Central  Google Scholar 

  • Das G, Patra JK, Baek KH (2017) Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking. Front Plant Sci 8:985. https://doi.org/10.3389/fpls.2017.00985

    Article  PubMed  PubMed Central  Google Scholar 

  • Das G, Rao GJN, Varier M, Prakash A, Prasad D (2018) Improved Tapaswini having four BB resistance genes pyramided with six genes/QTLs, resistance/tolerance to biotic and abiotic stresses in rice. Scientific Rep 8(1):1–16. https://doi.org/10.1038/s41598-018-20495-x

    Article  CAS  Google Scholar 

  • Dasari A, Vemulapalli P, Gonuguntla R, Thota DK, Elumalai P, Muppavarapu K, Butam LP, Kulkarni SR, Sinha P, Gunukula H, Kale RR, Muralidhara AD, Shaik H, Miriyala A, Karnati P, Shaik M, Shankar LG, Madamsetty SP, Sena B, Channappa G, Siddaih AM, Lella VSR, Didla RB, Mohammad LA, Jagarlamudi VR, Avula VG, Sundaram RM (2020) Improvement of bacterial blight resistance of the popular variety, Nellore Mahsuri, NLR34449 through marker-assisted breeding. J Genet 101:1–18. https://doi.org/10.21203/rs.3.rs-66828/v1

    Article  Google Scholar 

  • Dash AK, Rao RN, Rao GJ, Verma RL, Katara JL, Mukherjee AK, Singh ON, Bagchi TB (2016) Phenotypic and marker-assisted genetic enhancement of parental lines of Rajalaxmi, an elite rice hybrid. Front Plant Sci 7:1005. https://doi.org/10.3389/fpls.2016.01005

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshmukh UC, Verma RK, Saxena R, Mohan P, Verulkar S (2017) Marker assisted selection for bacterial leaf blight resistance in segregating populations of Karma Mahsuri. Inter J Plant Res 30(1):55–58. https://doi.org/10.5958/2229-4473.2017.00010.6

    Article  Google Scholar 

  • Dixit S, Singh UM, Singh AK, Alam S, Venkateshwarlu C, Nachimuthu VV, Yadav S, Abbai R, Selvaraj R, Devi MN, Ramayya PJ, Badri J, Ram T, Lakshmi J, Lakshmidevi G, Jai Vidhya LRK, Padmakumari AP, Laha GS, Prasad MS, Seetalam M, Singh VK, Kumar A (2020) Marker assisted forward breeding to combine multiple biotic-abiotic stress resistance/tolerance in rice. Rice 13(1):1–15. https://doi.org/10.1186/s12284-020-00391-7

    Article  Google Scholar 

  • Dunnett CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Ass 50:1096–1121

    Article  Google Scholar 

  • Fukagawa NK, Ziska LH (2019) Rice: importance for global nutrition. J Nutr Sci Vitaminol 65(Supplement):S2–S3. https://doi.org/10.3177/jnsv.65.S2

    Article  PubMed  Google Scholar 

  • He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484. https://doi.org/10.3389/fpls.2014.00484

    Article  PubMed  PubMed Central  Google Scholar 

  • Himabindu K, Suneetha K, Sama V, Bentur JS (2010) A new rice gall midge resistance gene in the breeding line CR57-MR1523, mapping with flanking markers and development of NILs. Euphytica 174(2):179–187. https://doi.org/10.1007/s10681-009-0106-2

    Article  CAS  Google Scholar 

  • Hsu YC, Chiu CH, Yap R, Tseng YC, Wu YP (2020) Pyramiding bacterial blight resistance genes in Tainung82 for broad-spectrum resistance using marker-assisted selection. Int J Mol Sci 21:1281. https://doi.org/10.3390/ijms21041281

    Article  CAS  PubMed Central  Google Scholar 

  • IRRI (2013) Standard evaluation system for rice. International Rice Research Institute, PO Box 933, 1099 Manila, Philippines 5:18

  • Jaganathan D, Bohra A, Thudi M, Varshney RK (2020) Fine mapping and gene cloning in the post-NGS era: advances and prospects. Theor Appl Genet 133:1791–1810. https://doi.org/10.1007/s00122-020-03560-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamaloddin M, Durga Rani CV, Swathi G, Anuradha C, Vanisri S, Rajan CPD, Krishnam Raju S, Bhuvaneshwari V, Jagadeeswar R, Laha GS, Prasad MS, Satyanarayana PV, Cheralu C, Rajani G, Ramprasad E, Sravanthi P, Arun Prem Kumar N, Aruna Kumari K, Yamini KN, Mahesh D, Sanjeev Rao D, Sundaram RM, Madhav MS (2020) Marker Assisted Gene Pyramiding (MAGP) for bacterial blight and blast resistance into mega rice variety “Tellahamsa.” PLoS ONE 15:1–19. https://doi.org/10.1371/journal.pone.0234088

    Article  CAS  Google Scholar 

  • Jian N, Yan J, Liang Y, Shi Y, He Z, Wu Y, Zeng Q, Liu X, Peng J (2020) Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)—an updated review. Rice 13(1):1–12. https://doi.org/10.1186/s12284-019-0358-y

    Article  Google Scholar 

  • Jin L, Lu Y, Shao Y, Zhang G, Xiao P, Shen S, Corke H, Bao J (2010) Molecular marker assisted selection for improvement of the eating, cooking and sensory quality of rice (Oryza sativa L.). J Cereal Sci 51(1):159–164. https://doi.org/10.1016/j.jcs.2009.11.007

    Article  CAS  Google Scholar 

  • Joseph M, Gopalakrishnan S, Sharma RK, Singh VP, Singh AK, Singh NK, Mohapatra T (2004) Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker assisted selection in rice. Mol Breed 13(4):377–387. https://doi.org/10.1023/b:molb.0000034093.63593.4c

    Article  CAS  Google Scholar 

  • Joshi RK, Nayak S (2010) Gene pyramiding-A broad spectrum technique for developing durable stress resistance in crops. Biotechnol Mol Biol Rev 5(3):51–60

    CAS  Google Scholar 

  • Katiyar SK, Chandel G, Tan Y, Zhang Y, Huang B, Nugaliyadde L, Fernando K, Bentur JS, Inthavong S, Constantino S, Bennett J (2000) Biodiversity of Asian rice gall midge (Orseolia oryzae Wood Mason) from five countries examined by AFLP analysis. Genome 43:322–332. https://doi.org/10.1139/g99-119

    Article  CAS  PubMed  Google Scholar 

  • Kauffman H, Reddy APK, Hsieh SPY, Merca SD, Kauffman EJ (1973) An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep 57(6):537–541

    Google Scholar 

  • Khush GS, Angeles ER (1999) A new gene for resistance to race 6 of bacterial blight in rice, Oryza sativa L. Rice Genet Newsl 16:92–93

    Google Scholar 

  • Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R, Abberton Batley J, Bentley A, Blakeney M, Bryant J, Cai H, Cakir M, Cseke LJ, Cockram J, Oliveira ACD, Ciro De Pace CD, Dempewolf H, Ellison S, Gepts P, Greenland A, Hall A, Hori K, Hughes S, Humphreys MW, Iorizzo M, Ismail AM, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC, Ortiz R, Paterson AH, Simon PW, Tohme J, Tuberosa R, Valliyodan B, Varshney RK, Wullschleger SD, Yano M, Prasad M (2015) Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:563. https://doi.org/10.3389/fpls.2015.00563

    Article  PubMed  PubMed Central  Google Scholar 

  • Leelagud P, Kongsila S, Vejchasarn P, Darwell K, Phansenee Y, Suthanthangjai A, Uparang C, Kawichai R, Yajai P, Boonsa-Nga K, Chamarerk V, Jairin J (2020) Genetic diversity of Asian rice gall midge based on mtCOI gene sequences and identification of a novel resistance locus gm12 in rice cultivar MN62M. Mol Biol Rep 47:4273–4283. https://doi.org/10.1007/s11033-020-05546-9

    Article  CAS  PubMed  Google Scholar 

  • Mackill DJ (2007) Molecular markers and marker-assisted selection in rice. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement. Springer, Dordrecht

    Google Scholar 

  • Makkar GS, Bentur JS (2017) Breeding for stem borer and gall midge resistance in rice. Breeding insect resistant crops for sustainable agriculture. Springer, Singapore, pp 323–352

    Chapter  Google Scholar 

  • Mathur KC, Krishnaiah K (2004) Rice gall midge: pest status, distribution and yield losses. In: New approaches to rice gall midge resistance in rice. pp 63–70

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, Clerck GD, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9(6):199–207

    Article  CAS  Google Scholar 

  • Mehta S, Singh B, Dhakate P, Rahman M, Islam MA (2019) Rice, marker-assisted breeding, and disease resistance. Disease resistance in crop plants. Springer, Cham, pp 83–111

    Chapter  Google Scholar 

  • Mew TW, Alvarez AM, Leach JE, Swings J (1993) Focus on bacterial blight of rice. Plant Dis 77:5–11

    Article  Google Scholar 

  • Mohan M, Sathyanarayanan PV, Kumar A, Srivastava MN, Nair S (1997) Molecular mapping of a resistance-specific PCR-based marker linked to a gall midge resistance gene (Gm4t) in rice. Theor Appl Genet 95(5–6):777–782. https://doi.org/10.1007/s001220050625

    Article  CAS  Google Scholar 

  • Mohapatra S, Behera L, Jena M, Pradhan SK, Mohanty SK, Sahu SC (2016) Molecular screening of rice genotypes using linked markers for gall midge resistance gene, Gm4. The Ecoscan 10(1 & 2):349–357

    CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4326. https://doi.org/10.1093/nar/8.19.4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthayya S, Sugimoto JD, Montgomery S, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. Ann N Y Acad Sci 1324(1):7–14. https://doi.org/10.1111/nyas.12540

    Article  PubMed  Google Scholar 

  • Nair S, Kumar A, Srivastava MN, Mohan M (1996) PCR-based DNA markers linked to a gall midge resistance gene, Gm4t, has potential for marker-aided selection in rice. Theor Appl Genet 92(6):660–665. https://doi.org/10.1007/BF00226086

    Article  CAS  PubMed  Google Scholar 

  • Nanda A, Mohanty SK, Sovan Panda R, Behera L, Prakash A, Sahu SC (2010) Flanking microsatellite markers for breeding varieties against Asian rice gall midge. Tropical Plant Biol 3(4):219–226. https://doi.org/10.1007/s12042-010-9059-9

    Article  CAS  Google Scholar 

  • Navaneetha KJ, Kumaravadivel N, Ramanathan A, Chandrasekar A, Bharathi M (2019) Marker-assisted selection for incorporating bacterial blight resistance genes in the segregating generation of rice variety CO 43. Indian J Ecol 46(4):803–809

    Google Scholar 

  • Nguyen HQ, Bosco G (2015) Gene positioning effects on expression in eukaryotes. Ann Rev Genet 49:627–646. https://doi.org/10.1146/annurev-genet-112414-055008

    Article  CAS  PubMed  Google Scholar 

  • Ni D, Song F, Ni J, Zhang A, Wang C, Zhao K, Li L (2015) Marker-assisted selection of two-line hybrid rice for disease resistance to rice blast and bacterial blight. Field Crops Res 184:1–8. https://doi.org/10.1016/j.fcr.2015.07.018

    Article  Google Scholar 

  • Nino-Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7(5):303–324

    Article  CAS  Google Scholar 

  • Oerke EC (2005) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Pandit E, Pawar S, Barik SR, Mohanty SP, Meher J, Pradhan SK (2021) Marker-assisted backcross breeding for improvement of submergence tolerance and grain yield in the popular rice variety ‘Maudamani.’ Agronomy 11:1–20. https://doi.org/10.3390/agronomy11071263

    Article  CAS  Google Scholar 

  • Prasanna BM, Cairns J, Xu Y (2013) Genomic tools and strategies for breeding climate resilient cereals. Genomics and breeding for climate-resilient crops. Springer, Berlin, pp 213–239

    Chapter  Google Scholar 

  • Rao P, Kandalkar H (1992) Identification of a new Asian rice gall midge (GM) population in Bhandara district, Maharashtra, India and highly resistant genotypes. Int Rice Res Notes 17:9–10

    Google Scholar 

  • Rasheed R, Ashraf MA, Iqbal M, Hussain I, Akbar A, Farooq U, Shad MI (2020) Major constraints for global rice production: changing climate, abiotic and biotic stresses. In: Roychoudhury A (ed) Rice research for quality improvement: genomics and genetic engineering: Volume 1: breeding techniques and abiotic stress tolerance. Springer, Singapore, pp 15–45. https://doi.org/10.1007/978-981-15-4120-9_2

    Chapter  Google Scholar 

  • Sanchez AC, Ilag LL, Yang D, Brar DS, Ausubel F, Khush GS, Yano M, Sasaki T, Li Z, Huang N (1999) Genetic and physical mapping of xa13 a recessive bacterial blight gene in rice. Theor Appl Genet 98:1022–1028. https://doi.org/10.1007/s001220051163

    Article  CAS  Google Scholar 

  • SAS Institute Inc (2013) SAS/ACCESS® 9.4 Interface to ADABAS: Reference. Cary, NC: SAS Institute Inc

  • Sastry MV, Rao PS, Seetharaman R (1975) Inheritance of gall midge resistance in rice and linkage relations. Indian J Genet Plant Breed 35(1):156–165

    Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4(2):519–537

    Article  Google Scholar 

  • Singh AK, Gopalakrishnan S, Singh VP, Prabhu KV, Mohapatra T, Singh NK, Sharma TR, Nagarajan M, Vinod KK, Singh D, Singh UD, Chander S, Atwal SS, Seth R, Singh VK, Ellur RK, Singh A, Anand D, Khanna A, Yadav S, Goel N, Singh A, Shikari AB, Singh A, Marathi B (2011a) Marker assisted selection: a paradigm shift in Basmati breeding. Indian J Genet Plant Breed 71(2):120–128

    CAS  Google Scholar 

  • Singh UD, Gogoi R, Mondal KK (2011b) Molecular approach for augmenting disease resistance in cereals: rice and maize. Plant Pathol Ind 20:21–30

    Google Scholar 

  • Singh VK, Singh A, Singh SP, Ellur RK, Singh D, Gopala Krishnan S, Bhowmick PK, Nagarajan M, Vinod KK, Singh UD, Mohapatra T, Prabhu KV, Singh AK (2013) Marker-assisted simultaneous but stepwise backcross breeding for pyramiding blast resistance genes Piz5 and Pi54 into an elite Basmati rice restorer line ‘PRR 78.’ Plant Breed 132(5):486–495. https://doi.org/10.1111/pbr.12077

    Article  CAS  Google Scholar 

  • Srivastava MN, Kumar A, Shrivastava SK, Sahu RK (1993) A new gene for resistance to gall midge in rice variety Abhaya. Rice Genet Newsl 10:79–80

    Google Scholar 

  • Swings J, Mooter MVD, Vauterin L, Hoste B, Gillis M, Mew TW, Kersters K (1990) Reclassification of the Causal Agents of Bacterial Blight (Xanthomonas campestris pv. oryzae) and Bacterial Leaf Streak (Xanthomonas campestris pv. oryzicola) of Rice as Pathovars of Xanthomonas oryzae (ex Ishiyama 1922) sp. nov., nom. rev. Int J Systemat Bacteriol 40:309–311. https://doi.org/10.1099/00207713-40-3-309

    Article  Google Scholar 

  • Van Berloo R (2008) GGT 2.0: versatile software for visualization and analysis of genetic data. J Hered 99:232–236

    Article  Google Scholar 

  • Venkanna V, Hari Y, Rukminidevi K, Chandra BS, Raju J, Malathi S, Reddy PRR (2018) Markers assisted selection for pyramiding of gall midge resistance genes in Kavya, a popular rice variety. Int J Curr Microbiol Appl Sci 7(4):745–753. https://doi.org/10.20546/ijcmas.2018.704.083

    Article  CAS  Google Scholar 

  • Wen N, Chu Z, Wang S (2003) Three types of defense-responsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Mol Genet Genomics 269:331–339. https://doi.org/10.1007/s00438-003-0839-x

    Article  CAS  PubMed  Google Scholar 

  • White FF, Yang B (2009) Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiol 150:1677–1686. https://doi.org/10.1104/pp.109.139360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Xu X, Gong Q, Li Z, Li Y, Wang S, Chen G (2019) Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol Plant 12(11):1434–1446. https://doi.org/10.1016/j.molp.2019.08.006

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Sandhu N, Dixit S, Singh VK, Catolos M, Mazumder RR, Rahman MA, Kumar A (2021) Genomics-assisted breeding for successful development of multiple-stress-tolerant, climate-smart rice for southern and southeastern Asia. Plant Genome 14(1):e20074. https://doi.org/10.1002/tpg2.20074

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Sugio A, White F (2006) Os8N3 is a host disease susceptibility gene for bacterial blight of rice. Proc Nat Acad Sci USA 103:10503–10508. https://doi.org/10.1073/pnas.0604088103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan M, Wang S (2013) Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant 6:665–674. https://doi.org/10.1093/mp/sst035

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Chu Z, Li X, Xu C, Wang S (2009) Pathogen-induced expressional loss of function is the key factor in race-specific bacterial resistance conferred by a recessive R gene xa13 in rice. Plant Cell Physiol 50:947–955. https://doi.org/10.1093/pcp/pcp046

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Angeles ER, Abenes MLP, Khush GS, Huang N (1996) RAPD and RFLP mapping of the bacterial blight resistance gene xa13 in rice. Theor Appl Genet 93:65–70. https://doi.org/10.1007/BF00225728

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Peng K, Chu Z, Wang S, Zhang Q (2002) The defense responsive genes showing enhanced and repressed expression after pathogen infection in rice (Oryza sativa L.). Sci China C Life Sci 45:449–467. https://doi.org/10.1360/02yc9050

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research work was supported by the Department of Biotechnology (DBT), Government of India under the grant number BT/PR 11705/AGR/02/646/2008. AC and MK are grateful to DBT for supporting them financially through Senior Research Fellowship. NK is grateful to DBT for providing scholarship assistance through JNU-CEEB post graduate fellowship.

Funding

The research work was supported by the Department of Biotechnology (DBT), Government of India under the grant number BT/PR 11705/AGR/02/646/2008.

Author information

Authors and Affiliations

Authors

Contributions

Study design and experimental methods: NK, RMS, SS and RG; Source of donor germplasm: RMS; Population development and genotyping: AC, MK and JNK; Field experiments and phenotyping: AC, MK and JNK; Statistical analysis and manuscript writing: JNK and AC. The authors AC and MK contributed equally.

Corresponding author

Correspondence to A. Chandrasekar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekar, A., Kumari, M., Navaneetha Krishnan, J. et al. Marker-assisted introgression of bacterial blight resistance gene xa13 into improved CO43. Euphytica 218, 118 (2022). https://doi.org/10.1007/s10681-022-03059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-022-03059-z

Keywords

Navigation