Skip to main content
Log in

Identification of Ms2, a novel locus controlling male-fertility restoration of cytoplasmic male-sterility in onion (Allium cepa L.), and development of tightly linked molecular markers

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Cytoplasmic male-sterility (CMS) has been exclusively used to produce F1 hybrid seeds of onion (Allium cepa L.). A single nuclear locus, Ms, is known to restore male-fertility of CMS in onions. Unstable male-sterile onions producing a small amount of pollen grains have been identified in a previous study. When such unstable male-sterile onions were crossed with stable male-sterile onions containing CMS-R cytoplasm, male-fertility was completely restored, although genotypes of the Ms locus were homozygous recessive. Inheritance patterns indicated that male-fertility restoration was controlled by a single locus designated as Ms2. A combined approach of bulked segregant analysis and RNA-seq was used to identify candidate genes for the Ms2 locus. High resolution melting markers were developed based on single nucleotide polymorphisms (SNPs) detected by RNA-Seq. Comparative mapping of the Ms2 locus showed that Ms2 was positioned at the end of chromosome 2 with a distance of approximately 70 cM away from the Ms locus. Although 38 contigs containing reliable SNPs were analyzed using recombinants selected from 1344 individuals, no contig showed perfect linkage to Ms2. Interestingly, transcription levels of orf725, a CMS-associated gene in onions, were significantly reduced in male-fertile individuals of segregating populations. However, no significant change in its transcription level was observed in individuals of a segregating population with male-fertility genotypes determined by the Ms locus, suggesting that male-fertility restoration mechanism of Ms2 might be different from that of the Ms locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert B, Godelle B, Gouyon PH (1998) Evolution of the plant mitochondrial genome: dynamics of duplication and deletion of sequences. J Mol Evol 46:155–158

    Article  CAS  PubMed  Google Scholar 

  • Allen JO, Fauron CM, Mink P, Roark L, Oddiraju S, Lin GN, Meyer L, Sun H, Kim K, Wang C, Du F, Xu D, Gibson M, Cifrese J, Clifton SW, Newton KJ (2007) Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177:1173–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backert S, Neilsen BL, Börner T (1997) The mystery of the rings: structure and replication of mitochondrial genomes from higher plants. Trends Plant Sci 2:477–483

    Article  Google Scholar 

  • Bang H, Kim S, Park SO, Yoo K, Patil BS (2013) Development of a codominant CAPS marker linked to the Ms locus controlling fertility restoration in onion (Allium cepa L.). Sci Hortic 153:42–49

    Article  CAS  Google Scholar 

  • Barham WS, Munger HM (1950) The stability of male sterility in onions. Proc Am Soc Hort Sci 56:401–409

    Google Scholar 

  • Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442

    Article  CAS  PubMed  Google Scholar 

  • Berninger E (1965) Contribution à l’étude de la sterilité mâle de l’oignon (Allium cepa L.). Ann Amélior Plant 15:183–199

    Google Scholar 

  • Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP (2016) Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep 35:967–993

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liu Y (2013) Male sterility and fertility restoration in crops. Ann Rev Plant Biol 65:579–606

    Article  CAS  Google Scholar 

  • Chen R, Zhao N, Li S, Grover CE, Nie H, Wendel JF, Hua J (2017) Plant mitochondrial genome evolution and cytoplasmic male sterility. Crit Rev Plant Sci 36:55–69

    Article  Google Scholar 

  • Chen R, Zhao X, Shao Z, Wei Z, Wang Y, Zhu L, Zhao J, Sun M, He R, He G (2007) Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. Plant Cell 19:847–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho Y, Kim B, Lee J, Kim S (2021) Construction of a high-resolution linkage map and chromosomal localization of the loci determining major qualitative traits in onion (Allium cepa L.). Euphytica 217:17

    Article  CAS  Google Scholar 

  • Cui X, Wise RP, Schnable PS (1996) The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272:1334–1336

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duangjit J, Bohanec B, Chan AP, Town CD, Havey MJ (2013) Transcriptome sequencing to produce SNP-based genetic maps of onion. Theor Appl Genet 126:2093–2101

    Article  CAS  PubMed  Google Scholar 

  • Fauron CMR, Moore B, Casper M (1995) Maize as a model of higher plant mitochondrial genome plasticity. Plant Sci 112:11–32

    Article  CAS  Google Scholar 

  • Ferreira RR, Santos CAF (2018) Partial success of marker-assisted selection of ‘A’ and ‘B’ onion lines in Brazilian germplasm. Sci Hortic 242:110–115

    Article  Google Scholar 

  • Fujii S, Toriyama K (2009) Suppressed expression of retrograde-regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants. Proc Natl Acad Sci USA 106:9513–9518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaborieau L, Brown GG, Mireau H (2016) The propensity of pentatricopeptide repeat genes to evolve into restorers of cytoplasmic male sterility. Front Plant Sci 7:1816

    Article  PubMed  PubMed Central  Google Scholar 

  • Gagliardi D, Leaver CJ (1999) Polyadenylation accelerates the degradation of the mitochondrial mRNA associated with cytoplasmic male sterility in sunflower. EMBO J 18:3757–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gökçe AF, Havey MJ (2002) Linkage equilibrium among tightly linked RFLPs and the Ms locus in open-pollinated onion populations. J Amer Soc Hort Sci 127:944–946

    Article  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  PubMed  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havey MJ (2000) Diversity among male-sterility-inducing and male-fertile cytoplasms of onion. Theor Appl Genet 101:778–782

    Article  CAS  Google Scholar 

  • Havey MJ (2013) Single nucleotide polymorphisms in linkage disequilibrium with the male-sterility restoration (Ms) locus in open-pollinated and inbred populations of onion. J Amer Soc Hort Sci 138:306–309

    Article  CAS  Google Scholar 

  • Havey MJ, Kim S (2021) Molecular marker characterization of commercially used cytoplasmic male sterilities in onion. J Amer Soc Hort Sci 146:351–355

    Article  Google Scholar 

  • Hu J, Wang K, Huang W, Liu G, Gao Y, Wang J, Huang Q, Ji Y, Qin X, Wan L, Zhu R, Li S, Yang D, Zhu Y (2012) The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell 24:109–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo YM, Liu BJ, Yang YY, Miao J, Gao LM, Kong SP, Wang ZB, Kitano H, Wu X (2015) AcSKP1, a multiplex PCR-based co-dominant marker in complete linkage disequilibrium with the male-fertility restoration (Ms) locus, and its application in open-pollinated populations of onion. Euphytica 204:711–722

    Article  CAS  Google Scholar 

  • Jones HA, Clarke A (1943) Inheritance of male sterility in the onion and the production of hybrid seed. Proc Am Soc Hort Sci 43:189–194

    Google Scholar 

  • Jones HA, Emsweller SL (1936) A male-sterile onion. Proc Am Soc Hort Sci 34:582–585

    Google Scholar 

  • Kafri R, Springer M, Pilpel Y (2009) Genetic redundancy: new tricks for old genes. Cell 136:389–392

    Article  CAS  PubMed  Google Scholar 

  • Kennell JC, Pring DR (1989) Initiation and processing of atp6, T-urf13 and ORF221 transcripts from mitochondria of T cytoplasm maize. Mol Gen Genet 216:16–24

    Article  CAS  Google Scholar 

  • Khar A, Saini N (2016) Limitations of PCR-based molecular markers to identify male-sterile and maintainer plants from Indian onion (Allium cepa L.) populations. Plant Breed 135:519–524

    Article  CAS  Google Scholar 

  • Kim B, Kim C, Kim S (2019a) Inheritance of fertility restoration of male-sterility conferred by cytotype Y and identification of instability of male fertility phenotypes in onion (Allium cepa L.). J Hort Sci Biotechnol 94:341–348

    Article  CAS  Google Scholar 

  • Kim B, Kim K, Yang T, Kim S (2016) Completion of the mitochondrial genome sequence of onion (Allium cepa L.) containing the CMS-S male-sterile cytoplasm and identification of an independent event of the ccmFN gene split. Curr Genet 62:873–885

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Kim S (2019) Identification of a variant of CMS-T cytoplasm and development of high resolution melting markers for distinguishing cytoplasm types and genotyping a restorer-of-fertility locus in onion (Allium cepa L.). Euphytica 215:164

    Article  CAS  Google Scholar 

  • Kim B, Yang T, Kim S (2019b) Identification of a gene responsible for cytoplasmic male-sterility in onions (Allium cepa L.) using comparative analysis of mitochondrial genome sequences of two recently diverged cytoplasms. Theor Appl Genet 132:313–322

    Article  CAS  PubMed  Google Scholar 

  • Kim S (2014) A codominant molecular marker in linkage disequilibrium with a restorer-of-fertility gene (Ms) and its application in reevaluation of inheritance of fertility restoration in onions. Mol Breed 34:769–778

    Article  CAS  Google Scholar 

  • Kim S, Kim C, Park M, Choi D (2015a) Identification of candidate genes associated with fertility restoration of cytoplasmic male-sterility in onion (Allium cepa L.) using a combination of bulked segregant analysis and RNA-seq. Theor Apple Genet 128:2289–2299

    Article  CAS  Google Scholar 

  • Kim S, Kim M, Kim Y, Yeom S, Cheong K, Kim K, Jeon J, Kim S, Kim D, Sohn S, Lee Y, Choi D (2015b) Integrative structural annotation of de novo RNA-Seq provides an accurate reference gene set of the enormous genome of the onion (Allium cepa L.). DNA Res 22:19–27

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lee E, Cho DY, Han T, Bang H, Patil BS, Ahn YK, Yoon M (2009) Identification of a novel chimeric gene, orf725, and its use in development of a molecular marker for distinguishing three cytoplasm types in onion (Allium cepa L.). Theor Appl Genet 118:433–441

    Article  CAS  PubMed  Google Scholar 

  • Kitazaki K, Arakawa T, Matsunaga M, Yui-Kurino R, Matsuhira H, Mikami T, Kubo T (2015) Post-translational mechanisms are associated with fertility restoration of cytoplasmic male sterility in sugar beet (Beta vulgaris). Plant J 83:290–299

    Article  CAS  PubMed  Google Scholar 

  • Kitazaki K, Kubo T (2010) Cost of having the largest mitochondrial genome: Evolutionary mechanism of plant mitochondrial genome. J Bot 2010:620137

    Google Scholar 

  • Kmiec B, Woloszynska M, Janska H (2006) Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr Genet 50:149–159

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R and 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25: 2078–2079

  • Manna S (2015) An overview of pentatricopeptide repeat proteins and their applications. Biochimie 113:93–99

    Article  CAS  PubMed  Google Scholar 

  • McCauley DE, Bailey MF (2009) Recent advances in the study of gynodioecy: the interface of theory and empiricism. Ann Bot 104:611–620

    Article  PubMed  PubMed Central  Google Scholar 

  • Menassa R, L’Homme Y, Brown GG (1999) Post-transcriptional and developmental regulation of a CMS-associated mitochondrial gene region by a nuclear restorer gene. Plant J 17:491–499

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997) Evolution of genetic redundancy. Nature 388:167–171

    Article  CAS  PubMed  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2001) Mitochondrial DNA from the liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5’ protein. J Mol Biol 310:549–562

    Article  CAS  PubMed  Google Scholar 

  • Park J, Bang H, Cho DY, Yoon M, Patil BS, Kim S (2013) Construction of high-resolution linkage map of the Ms locus, a restorer-of-fertility gene in onion (Allium cepa L.). Euphytica 192:267–278

    Article  CAS  Google Scholar 

  • Pickett FB, Meeks-Wagner DR (1995) Seeing double: appreciating genetic redundancy. Plant Cell 7:1347–1356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh M, Kubo T, Nishizawa S, Estiati A, Itchoda N, Mikami T (2004) The cytoplasmic male-sterile type and normal type mitochondrial genomes of sugar beet share the same complement of genes of known function but differ in the content of expressed ORFs. Mol Genet Genomics 272:247–256

    Article  CAS  PubMed  Google Scholar 

  • Schweisguth B (1973) Étude d’un nouveau type de stérilité male chez l’oignon, Allium cepa L. Ann Amélior Plant 23:221–233

    Google Scholar 

  • Skippington E, Barkman TJ, Rice DW, Palmer JD (2015) Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proc Natl Acad Sci USA 112:E3515-3524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloan DB (2013) One ring to rule them all? Genome sequencing provides new insights into the “master circle” model of plant mitochondrial DNA structure. New Phytol 200:978–985

    Article  CAS  PubMed  Google Scholar 

  • Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR (2012) Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol 10:e1001241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloan DB, Alverson AJ, Storchová H, Palmer JD, Taylor DR (2010) Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. BMC Evol Biol 10:274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Small I, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69–76

    Article  CAS  PubMed  Google Scholar 

  • Sohn S, Ahn Y, Lee T, Lee J, Jeong M, Seo C, Chandra R, Kwon Y, Kim C, Kim D, Won S, Kim JS, Choi D (2016) Construction of a draft reference transcripts of onion (Allium cepa) using long-read sequencing. Plant Biotechnol Rep 10:383–390

    Article  Google Scholar 

  • Song XY, Zhang LL, Zeng JL, Qian HH, Li HB, He BR (2013) Development of thermo-sensitive cytoplasmic male sterile (TCMS) lines of wheat characterized by complete male sterility at lower-temperatures and partially restored fertility at higher-temperatures. Euphytica 192:393–399

    Article  CAS  Google Scholar 

  • Tang HV, Chen W, Pring DR (1999) Mitochondrial orf107 transcription, editing, and nucleolytic cleavage conferred by the gene Rf3 are expressed in sorghum pollen. Sex Plant Reprod 12:53–59

    Article  CAS  Google Scholar 

  • Van der Meer QP, van Bennekom JL (1969) Effect of temperature on the occurrence of male sterility in onion (Allium cepa L.). Euphytica 18:389–394

    Article  Google Scholar 

  • Wan X, Wu S, Li Z, Dong Z, An X, Ma B, Tian Y, Li J (2019) Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant 12:321–342

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu Y (2006) Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woloszynska M, Trojanowski D (2009) Counting mtDNA molecules in Phaseolus vulgaaris: sublimons are constantly produced by recombination via short repeats and undergo rigorous selection during substoichiometric shifting. Plant Mol Biol 70:511–521

    Article  CAS  PubMed  Google Scholar 

  • Yang YY, Huo YM, Miao J, Liu BJ, Kong SP, Gao LM, Liu C, Wang ZB, Tahara Y, Kitano H, Wu X (2013) Identification of two SCAR markers co-segregated with the dominant Ms and recessive ms alleles in onion (Allium cepa L.). Euphytica 190:267–277

    Article  CAS  Google Scholar 

  • Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, Lu S, Li F, Zhu L, Liu Z, Chen L, Liu Y, Zhuang C (2012) Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res 22:649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Ji-hwa Heo, Jeong-An Yoo, and Su-jeong Kim for their dedicated technical assistance.

Funding

This study was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) via Golden Seed Project (Center for Horticultural Seed Development, No 213007-05-5-SBB10).

Author information

Authors and Affiliations

Authors

Contributions

NY performed experiments and drafted the manuscript. SK organized and coordinated this research project and edited the final manuscript.

Corresponding author

Correspondence to Sunggil Kim.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethical approval

All experiments were performed in compliance with current laws of the Republic of Korea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10681_2021_2927_MOESM1_ESM.tif

Supplementary Fig. 1. Pedigree of populations used in this study. S1, OP1, OP2 populations were produced in a previous study (Kim et al. 2019a). MF and MS indicate male-fertile and male-sterile phenotypes, respectively. (TIF 60 KB)

10681_2021_2927_MOESM2_ESM.tif

Supplementary Fig. 2. Pollen morphologies of male-fertile onions of which male-fertility were restored by Ms and Ms2 loci, respectively. Male-fertile onions restored by the dominant Ms allele (A and B). Male-fertile onions restored by the dominant Ms2 allele (C and D). Scale bars in images of multiple and single pollen grains indicate 20 μm and 10 μm, respectively. (TIF 685 KB)

10681_2021_2927_MOESM3_ESM.tif

Supplementary Fig. 3. Genotypes of molecular markers showing linkage disequilibrium with the Ms locus in male-fertile and male-sterile individuals of the TUMS4 population. A, H, B: Homozygous dominant, heterozygous, and homozygous recessive Ms genotypes, respectively. Detail information about these molecular markers has been described by Kim et al. (2015a). (TIF 395 KB)

10681_2021_2927_MOESM4_ESM.tif

Supplementary Fig. 4. Correlation of transcription levels of all contigs between male-fertile and male-sterile bulked RNAs. A, B, C. First, second, and third RNA-seq analyses mapped to the reference transcriptome (Kim et al. 2015b), respectively. D, E, F. First, second, and third analyses mapped to de novo-assembled contigs, respectively. G, H. Second and third analyses mapped to reference transcripts (Sohn et al. 2016), respectively. (TIF 298 KB)

Supplementary file5 (XLSX 9 KB)

Supplementary file6 (XLSX 38 KB)

Supplementary file7 (XLSX 9 KB)

Supplementary file8 (DOCX 15 KB)

Supplementary file9 (XLSX 10 KB)

Supplementary file10 (DOCX 15 KB)

Supplementary file11 (DOCX 13 KB)

Supplementary file12 (DOCX 15 KB)

Supplementary file13 (XLSX 31 KB)

Supplementary file14 (XLSX 12 KB)

Supplementary file15 (DOCX 16 KB)

Supplementary file16 (XLSX 114 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, N., Kim, S. Identification of Ms2, a novel locus controlling male-fertility restoration of cytoplasmic male-sterility in onion (Allium cepa L.), and development of tightly linked molecular markers. Euphytica 217, 191 (2021). https://doi.org/10.1007/s10681-021-02927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-021-02927-4

Keywords

Navigation