Skip to main content
Log in

Genetic diversity of 324 cultivated tomato germplasm resources using agronomic traits and InDel markers

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The study of morphological and molecular diversity and grouping analysis for cultivated inbred tomato lines is very important to help breeders in selecting parental lines for hybrid breeding and developing heterotic groups. In this study, a total of 324 cultivated inbred tomato lines collected from various sources were investigated for the presence of 17 agronomic traits and subsequently genotyped with a 56- (insertion–deletion) InDel assay. The phenotypic coefficient of variation ranged from 5 to 108% with an average of 36%, and the range of phenotypic diversity index was 0.41– 2.06, with an average of 1.59. The outstanding traits in terms of causing phenotypic diversity of the inbred tomato lines are resistance to gray leaf spot, hypocotyl colour, growth habit, fruit shape, plant height, days to 30% first flower, weight per fruit, hardness, brix, acid, number of locules and transverse diameter of fruit by principal component analyses (PCA). The values of Shannon’s information index, polymorphic information content and heterozygosity are 0.61, 0.33 and 0.06 respectively. The PCA and Ward’s method for cluster multivariate analysis based on 17 agronomic traits revealed that there are four major groups with rich genetic diversity within groups. Model-based population structure analysis indicated that the 324 cultivated inbred tomato lines were separated into two main groups that were different from the results of the three main groups and five subgroups by Nei’s (Am Nat 106:283–292, 1973) cluster analysis based on InDel markers. The Mantel test correlation coefficient of the matrices of morphological and InDel distances was 0.229. Overall, this study reveals that 324 cultivated inbred tomato lines are diverse with high homozygosity and a rich genetic background. Nei’s (1973) cluster analysis can serve as an effective approach for assigning germplasm into groups and for providing guidelines for parental selection in hybrid tomato breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta-Quezada PG, Vilanova S, Martínez-Laborde JB, Prohens J (2012) Genetic diversity and relationships in accessions from different cultivar groups and origins in the tree toamto (Solanum betaceum Cav.). Euphytica 187:87–97

    Article  Google Scholar 

  • Alvarez AE, van de Wiel CCM, Smulders MJM, Vosman B (2001) Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor Appl Genet 103:1283–1292

    Article  CAS  Google Scholar 

  • Andrea M, Roberto P, Elena B et al (2007) Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor Appl Genet 11:657–669

    Google Scholar 

  • Badu-Apraku B, Lum AF (2007) Agronomic performance of Striga resistant early maturing maize varieties and inbred lines in the savannas of West and Central Africa. Crop Sci 47:2–15

    Article  Google Scholar 

  • Bauchet G, Causse M (2012) Genetic diversity in tomato (Solanum lycopersicum) and its wild relatives. In: Caliskan M (ed) Genetic diversity in plants. InTech, Rijeka, pp 133–162

    Google Scholar 

  • Benor S, Zhang M, Wang Z, Zhang H (2008) Assessment of genetic variation in tomato (Solanum lycopersicum L.) inbred lines using SSR molecular markers. J Genet Genomics 35:373–379

    Article  CAS  PubMed  Google Scholar 

  • Berhanu TE, Kassa S, Biswanath D et al (2017) Genetic variation and population structure of maize inbred lines adapted to the midaltitude sub-humid maize agro-ecology of Ethiopia using single nucleotide polymorphic (SNP) markers. BMC Genomics 18:777

    Article  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Causse M, Desplat N, Pascual L et al (2013) Whole genomeresequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics 14:791

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C, Li B, Huang CQ et al (2010) Comparison analysis of Phytophthora infestans population genetic structure from different hosts based on SSR markers. Chinese Agricultural Science, Bulletin, Beijing

    Google Scholar 

  • Corrado G, Caramante M, Piffanelli P, Rao R (2014) Genetic diversity in Italian tomato landraces: implications for the development of a core collection. Sci Hortic 168:138–144

    Article  Google Scholar 

  • da Silveira LCI, Brasilleiro BP (2015) Genetic diversity and coefficient of kinship among potential genitors for obtaining cultivars of energy cane1. Revista Ciência Agronômica 46(2):358–368

    Article  Google Scholar 

  • Das S, Upadhyaya HD, Srivastava R et al (2015) Genome-wide insertion–deletion (InDel) marker discovery and genotyping for genomics-assisted breeding applications in chickpea. DNA Res 22:377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Feng JJ (2017) Genetic diversity and genome-wide association study on the key agronomic traits of wild tomato Solanum pimpinellifolium

  • Flint-Garcia SA, Buckler ES, Tiffin P, Ersoz E, Springer NM (2009) Heterosis is prevalent for multiple traits in diverse maize germplasm. PLoS ONE 4(10):e7433

    Article  PubMed  PubMed Central  Google Scholar 

  • Frankel R (1983) Heterosis in the tomato. Theor Appl Genet 6:189

    Google Scholar 

  • Geleta LF, Labuschagne MT, Viljoen CD (2005) Genetic variability in pepper (Capsicum annuum L.) estimated by morphological data and amplified fragment length polymorphismmarkers. Biodivers Conserv 14:2361–2375

    Article  Google Scholar 

  • Giandomenico C, Martina C, Piffanelli P et al (2014) Genetic diversity in Italian tomato landraces: implications for the development of a core collection. Sci Hortic 168:138–144

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDI: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Khalil MR (2004) Breeding studies on tomato. M.Sc. Thesis. Fac. Agric. Minufiya Univ., Egypt, pp 1–99

  • Li XX, Du YC (2006) Description and data standard for tomato. China Agriculture Press, Beijing

    Google Scholar 

  • Liu XX (2017) Associaton and genetic identification of loci for four fruit traits in tomato using InDel markers. Front Plant Sci 8:1269

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Goodman MM, Muse S, Smith JSC, Buckler ES, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu ZM, Xu B (2010) On significance of heterotic group theory in hybrid rice breeding. Rice Sci 17:94–98

    Article  Google Scholar 

  • Luckwill LC (1943) The genus Lycopersicon: an historical, biological, and taxonomical survey of the wild and cultivated tomatoes. Aberdeen Univ Stud 120:1–44

    Google Scholar 

  • Lund B (2002) Repatriation of Nordic barley germplasm. Ph.D. dissertation, The Royal Veterinary and Agricultural University, Section of Plant Breeding and Crop Science, Copenhagen, Denmark

  • Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Lamkey KR, Staub JE (eds) Concepts and breeding of heterosis in crop plants. CSSA, Madison, pp 29–44

    Google Scholar 

  • Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Sci 43:1235–1248

    Article  Google Scholar 

  • Moll RH, Longquist LH, Fortuna JY, Johnson EC (1965) The relation of heterosis and genetic divergence in maize. Genetics 52:139–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M (1973) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Pritchard JK, Stephens P, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reif JC, Hallauer AR, Melchinger AE (2005) Heterosis and heterotic patterns in maize. Maydica 50:215

    Google Scholar 

  • Reif JC, Zhao Y, Wurschum T, Gowda M (2013) Genomic prediction of sunflower hybrid performance. Plant Breed 132:107–114

    Article  CAS  Google Scholar 

  • Rui WJ, Wang XM (2018) Genetic diversity analysis of 353 tomato germplasm resources by phenotypic traits. Acta Hortic Sin 45(3):561–570

    Google Scholar 

  • Sherry AF, Edward SB, Peter T et al (2009) Heterosis is prevalent for multiple traits in diverse maize germplasm. Plos one 4(10):e7433

    Article  Google Scholar 

  • Soller M, Beckmann J (1983) Genetic polymorphism in varietal identification and genetic improvement. Theor Appl Genet 67:25–33

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarek AS (2013) Mode of gene action, heterosis and inbreeding depression for yield and its components in tomato(Solanum lycopersicumL.). Sci Hortic 164:540–543

    Article  Google Scholar 

  • Thiphan N, Kim MK, Sung-Chur S (2016) Genetic variations of F1 tomato cultivars revealed by a core set of SSR and Indel markers. Sci Hortic 212:155–161

    Article  Google Scholar 

  • Thompson JA, Nelson RL, Vodkin LO (1998) Identification of diverse soybean germplasm using RAPD markers. Crop Sci 38:1348–1355

    Article  Google Scholar 

  • Tong VG, Du YC (2016) Development of In Del Markers and Fine-mapping of locule number 2.2 in Tomato

  • Wang K, Qiu FL, Paz MAD, Zhuang JY (2014) Genetic diversity and structure of improved indica rice germplasm. Plant Genet Resour 12(2):248–254

    Article  Google Scholar 

  • Wang K, Qiu FL, Larazo W et al (2015) Heterotic groups of tropical indica rice germplasm. Theor Appl Genet 128:421–430

    Article  CAS  PubMed  Google Scholar 

  • Ward Joe H (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Yang J, Wang Y, Shen H, Yang W (2014) In silico identification and experimentalvalidation of insertion–deletion polymorphisms in tomato genome. DNA Res 21:429–438

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of codominant and dominant markers and quantitative traits. Belgian J Bot 129:157

    Google Scholar 

  • Zhao LP, Zhao TM, Wang YL et al (2014). Research progress in gray leaf spot of tomato. Jiangsu J Agric Sci 1000-4440 06-1524-07

Download references

Acknowledgements

The authors acknowledge the National Key Research and Development Program of China (2016YFD0101703), the fifth “333” High-level Personnel Training Project of Jiangsu, the Modern Agricultural Industry Technology System Project of Jiangsu (JATS[2018]264), the State Scholarship Fund of China (201808320074), and science and technology planning project of Qinghai (2017-HZ-808).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wengui Yu or Tongmin Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Supplementary material 2 (DOCX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Zhao, L., Wang, Y. et al. Genetic diversity of 324 cultivated tomato germplasm resources using agronomic traits and InDel markers. Euphytica 215, 69 (2019). https://doi.org/10.1007/s10681-019-2391-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2391-8

Keywords

Navigation