Skip to main content
Log in

Molecular and phenotypic identification of B-genome introgression linked to Leptosphaeria maculans resistant gene Rlm6 in Brassica napus × B. juncea interspecific hybrids

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Blackleg is a devastating disease in canola worldwide, except in China, caused by the fungal pathogen Leptosphaeria maculans. The B-genome Brassica species were reported to have a strong resistance to the blackleg pathogen L. maculans. Backcross (BC) generations, BC1F1 to BC4F1, were derived from a cross B. napus × B. juncea. Phenotype of L. maculans isolate J20 showed that 49% of BC1F1, 27% of BC2F1, 15% of BC3F1, and 10% of BC4F1 plants were resistant to the isolate J20. Offspring from the interspecific hybridization were also analysed for the presence of dominant type SCAR markers detecting loci linked to the B. juncea genome. The plants with B. juncea introgression had a decrease in the presence of SCAR markers ranging from 47% in BC1F1 to 30% in BC2F1 and further down to 18% in BC3F1 and 11% in BC4F1 with respect to the marker B5Rlm6_1. A similar trend of loci reduction was also observed for the marker B5-1520. In contrast, the progression of the B. napus genome correlated with an incremental increase in the presence of the two markers with the advancement of the generations. However, segregation of SCAR markers and phenotypes for the blackleg resistance in BC1F1 plants had an acceptable fit to a Mendelian ratio of resistant versus susceptible, supporting the assumption that the genetic control of resistance is governed by a single dominant gene. The BC generations developed in this study, which show introgression of the B. juncea genome linked to the L. maculans resistance gene Rlm6, would facilitate breeding a B. napus variety resistant to blackleg in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amante-Bordeos A, Sitch LA, Nelson R, Dalmacio RD, Oliva NP, Aswidinnoor H, Leung H (1992) Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa. Theor Appl Genet 84:345–354

    CAS  PubMed  Google Scholar 

  • Balesdent MH, Attard A, Kuhn ML, Rouxel T (2002) New avirulence genes in the phytopathogenic fungus Leptosphaeria maculans. Phytopathology 92:1122–1133

    Article  CAS  Google Scholar 

  • Barret P, Guérif J, Reynoird JP, Delourme R, Eber F, Renard M, Chèvre AM (1998) Selection of stable Brassica napus-Brassica juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). 2. A ‘To and Fro’ strategy to localise and characterise interspecific introgressions on the B. napus genome. Theor Appl Genet 96:1097–1103

    Article  CAS  Google Scholar 

  • Bing DJ, Downey RK, Rakow GFW (1991) Potential of gene transfer among oilseed Brassica and their weedy relatives. In: Proceedings of GCTRC international rapeseed congress, Saskatoon, Canada, pp 1022–1027

  • Brun H, Chèvre AM, Fitt BDL, Powers S, Besnard AL, Ermel M, Huteau V, Marquer B, Eber F, Renard M, Andrivon D (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol 185:285–299

    Article  Google Scholar 

  • Chen Y, Fernando WGD (2006) Prevelance of pathogenicity groups of Leptosphaeria maculans in Western Canada and North Dakota, USA. Can J Plant Pathol 28:533–539

    Article  Google Scholar 

  • Chèvre AM, Eber F, Barret P, Tanguy X, Brun H, Delseny M, Renard M (1996) Characterization of Brassica nigra chromosomes of blackleg resistance in B. napusB. nigra addition lines. Plant Breed 115:113–118

    Article  Google Scholar 

  • Chèvre AM, Barret P, Eber F, Dupuy P, Brun H, Tanguy X, Renard M (1997) Selection of stable Brassica napusB. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). 1. Identification of molecular markers, chromosomal and genomic origin of the introgression. Theor Appl Genet 95:1104–1111

    Article  Google Scholar 

  • Chèvre AM, Brun H, Eber F, Letanneur JC, Vallee P, Ernel M, Glais I, Li H, Sivasithamparam K, Barbetti MJ (2008) Stabilization of resistance to Leptosphaeria maculans in Brassica napusB. juncea recombinant lines and its introgression into spring-type Brassica napus. Plant Dis 92:1208–1214

    Article  Google Scholar 

  • Christianson JA, Rimner SR, Good AG, Lydiate DJ (2006) Mapping genes for resistance to Leptosphaeria maculans in Brassica juncea. Genome 49:30–41

    Article  CAS  Google Scholar 

  • Daverdin G, Rouxel T, Gout L, Aubertot JN, Fudal I, Meyer M, Parlange F, Carpezat J, Balesdent MH (2012) Genome structure and reproductive behaviour influence the evolutionary potential of a fungal phytopathogen. PLoS Pathog 8:e1003020

    Article  CAS  Google Scholar 

  • Delourme R, Chèvre AM, Eber F, Foisset N, Pilet ML, Barret P, Brun H, Tanguy X, Renard M (1995) Mapping of blackleg resistance genes. Blackleg Newslett 5:4–6

    Google Scholar 

  • Dion Y, Gugel RK, Rakow GFW, Seguin-Swartz G, Landry BS (1995) RFLP mapping of resistance to the blackleg disease [causal agent, Leptosphaeria maculans (Desm.) Ces. et de Not.] in canola (Brassica napus L.). Theor Appl Genet 91:1190–1194

    Article  CAS  Google Scholar 

  • Dixelius G, Wahlberg S (1999) Resistance to Leptosphaeria maculans is conserved in a specific region of the Brassica B-genome. Theor Appl Genet 99:368–372

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fitt BDL, Brun H, Barbetti MJ, Rimmer SR (2006) World-wide importance of phoma stems canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur J Plant Pathol 114:3–15

    Article  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Fredua-Agyeman R, Coriton O, Huteau V, Parkin IAP, Chèvre AM, Rahman H (2014) Molecular cytognetic identification of B-genome chromosomes linked to blackleg disease resistance in Brassica napus × B. carinata interspecific hybrids. Theor Appl Genet 127:1305–1318

    Article  Google Scholar 

  • Frello S, Hansen KR, Jensen J, Jorgensen RB (1995) Inheritance of rapeseed (Brassica napus)-specific RAPD markers and a transgene in the cross B. juncea × (B. juncea × B. napus). Theor Appl Genet 91:236–241

    Article  CAS  Google Scholar 

  • Fudal I, Ross S, Gout L, Blaise F, Kuhn ML, Eckert MR, Cattolico L, Bernard-Samain S, Balesdent MH, Rouxel T (2007) Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map-based cloning of AvrLm6. Mol Plant Microbe Interact 20:459–470

    Article  CAS  Google Scholar 

  • Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    Article  CAS  Google Scholar 

  • Kuswinanti T, Sock J, Hoppe HH (1995) Variation in virulence of aggressive isolates of Leptosphaeria maculans based on cotyledon reactions on an extended differential set. In: Proceedings of 9th international rapeseed congress, Cambridge, UK, pp 1248–1250

  • Ky CL, Barre P, Lorieux M, Trouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M (2000) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theor Appl Genet 101:669–676

    Article  CAS  Google Scholar 

  • Leflon M, Eber F, Letanneur JC, Chelysheva L, Coriton O, Huteau V, Ryder CD, Barker G, Jenczewski E, Chèvre AM (2006) Pairing and recombination at meiosis of Brassica rapa (AA) × Brassica napus (AACC) hybrids. Theor Appl Genet 113:1467–1480

    Article  CAS  Google Scholar 

  • Leflon M, Brun H, Eber F, Delourme R, Lucas MO, Vallée P, Ermel M, Balesdent MH, Chèvre AM (2007) Detection, introgression and localization of genes conferring specific resistance to Leptosphaeria maculans from Brassica rapa into B. napus. Theor Appl Genet 115:897–906

    Article  CAS  Google Scholar 

  • Liban SH, Cross DJ, Kutcher HR, Peng G, Fernando WGD (2016) Race structure and frequency of avirulence genes in the western Canadian Leptosphaeria maculans pathogen population, the causal agent of blackleg in brassica species. Plant Pathol 65:1161–1169

    Article  CAS  Google Scholar 

  • Liu S, Yeh C-T, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS ONE 7:e36406

    Article  CAS  Google Scholar 

  • Nagaharu U (1935) Genome-analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Navabi ZK, Parkin IAP, Pires JC, Xiong Z, Thiagarajah MR, Good AG, Rahman MH (2010) Introgression of B-genome chromosomes in a doubled haploid population of Brassica napus × B. carinata. Genome 53:619–629

    Article  CAS  Google Scholar 

  • Pang ECK, Halloran GM (1996) The genetics of blackleg [Leptosphaeria maculans (Desm.) Ces. et de Not.] resistance in rapeseed (Brassica napus L.). II. Seedling and adult-plant resistance as quantitative traits. Theor Appl Genet 93:941–949

    Article  CAS  Google Scholar 

  • Plieske J, Struss D, Röbbelen G (1998) Inheritance of resistance derived from the B-genome of Brassica against Phoma lingam in rapeseed and the development of molecular markers. Theor Appl Genet 97:929–936

    Article  CAS  Google Scholar 

  • Prakash S, Chopra VL (1988) Introgression of resistance to shattering in Brassica napus from Brassica juncea through non-homologous recombination. Plant Breed 101:167–168

    Article  Google Scholar 

  • Raman H, Raman R, Larkan N (2013) Genetic dissection of blackleg resistance loci in rapeseed (Brassica napus L.). In: Andersen SB (ed) Plant breeding from laboratories to fields. InTech, Rijeka, pp 85–120

    Google Scholar 

  • Rashid MH, Zou Z, Fernando WGD (2018) Development of molecular markers linked to the Leptosphaeria maculans resistance gene Rlm6 and inheritance of SCAR and CAPS markers in B. napus × B. juncea interspecific hybrids. Plant Breed 137:402–411

    Article  CAS  Google Scholar 

  • Rimmer SR, van den Berg CGJ (1992) Resistance of oilseed Brassica spp. to blackleg caused by Leptosphaeria maculans. Can J Plant Pathol 14:56–66

    Article  Google Scholar 

  • Rouxel T, Willner E, Coudard L, Balesdent MH (2003) Screening and identification of resistance to Leptosphaeria maculans (stem canker) in Brassica napus accessions. Euphytica 133:219–231

    Article  CAS  Google Scholar 

  • Roy NN (1978) A study on disease variation in the populations of an interspecific cross of Brassica juncea L. × Brassica napus L. Euphytica 27:145–149

    Article  Google Scholar 

  • Roy NN (1984) Interspecific transfer of Brassica juncea-type high blackleg resistance to Brassica napus. Euphytica 33:295–303

    Article  Google Scholar 

  • Saal B, Struss D (2005) RGA- and RAPD-derived SCAR makers for a Brassica B-genome introgression conferring resistance to blackleg in oilseed rape. Theor Appl Genet 111:281–290

    Article  CAS  Google Scholar 

  • Saal B, Brun H, Glais I, Struss D (2004) Identification of a Brassica juncea-derived recessive gene conferring resistance to Leptosphaeria maculans in oilseed rape. Plant Breed 123:505–511

    Article  CAS  Google Scholar 

  • Sacristán MD, Gerdemann M (1986) Different behavior of Brassica juncea and B. carinata as sources of Phoma lingam resistance in experiments of interspecific transfer to B. napus. Plant Breed 97:304–314

    Article  Google Scholar 

  • Schelfhout CJ, Snowdon R, Cowling WA, Wroth JM (2006) Tracing B-genome chromatin in Brassica napus × B. juncea interspecific progeny. Genome 49:1490–1497

    Article  CAS  Google Scholar 

  • Sjodin C, Glimelius K (1988) Screening for resistance to blackleg Phoma lingam (Tode ex Fr.) Desm. within Brassicaceae. J Phytopathol 123:322–332

    Article  Google Scholar 

  • Song K, Tang K, Osborn TC (1993) Development of synthetic Brassica amphidiploids by reciprocal hybridization and comparison to natural amphidiploids. Theor Appl Genet 86:811–821

    Article  CAS  Google Scholar 

  • Sprague SJ, Marcroft SJ, Hayden HL, Howlett BJ (2006) Major gene resistance to blackleg in Brassica napus overcome within three years of commercial production in Southeastern Australia. Plant Dis 90:190–198

    Article  Google Scholar 

  • Struss D, Bellin U, Robbelen G (1991) Development of B-genome chromosome addition lines of B. napus using different interspecific Brassica hybrids. Plant Breed 106:209–214

    Article  Google Scholar 

  • Struss D, Quiros CF, Plieske J, Robbelen G (1996) Construction of Brassica B-genome synteny groups based on chromosomes extracted from three different sources by phenotypic, isozyme and molecular markers. Theor Appl Genet 93:1026–1032

    Article  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  Google Scholar 

  • Van de Wouw AP, Cozijnsen AJ, Hane JK, Brunner PC, McDonald BA, Oliver RP, Howlett BJ (2010) Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PloS Pathogens 6:1–15

    Google Scholar 

  • Van de Wouw AP, Lowe RGT, Elliott CE, Dubois DJ, Howlett BJ (2014) An avirulence gene, AvrLmJ1, from the blackleg fungus, Leptosphaeria maculans, confers avirulence to Brassica juncea varieties. Mol Plant Pathol 15:523–530

    Article  Google Scholar 

  • Wang D (2016) Transferring blackleg resistance from Brassica carinata and synthetic hexaploid Brassica accessions into Brassica napus. Master’s thesis, University of Manitoba, Canada

  • Williams PH, Delwiche PA (1979) Screening for resistance to blackleg of crucifers in the seedling stage. In: Proceedings of Eucarpia ‘Cruciferae 1979’ conference, October 1979, Wageningen, The Netherlands, pp 164–170

  • Zhang X, Peng G, Kutcher HR, Balesdent MH, Delourme R, Fernando WGD (2016) Breakdown of Rlm3 resistance in the Brassica napusLeptosphaeria maculans pathosystem in western Canada. Eur J Plant Pathol 145:659–674

    Article  CAS  Google Scholar 

  • Zhu JS, Struss D, Robbelen G (1993) Studies on resistance to Phoma lingam in Brassica napusBrassica nigra addition lines. Plant Breed 111:192–197

    Article  Google Scholar 

Download references

Acknowledgements

We thank Paula Parks, Rob Visser, and Cathy Bay for their help in the greenhouse study, and to SaskCanola, Agriculture and Agri-Food Canada (AAFC)-Growing Forward 2 programs and the National Sciences and Engineering Research Council of Canada (NSERC) for funding. We also acknowledge Hossein Borhan (AAFC, Saskatoon) for providing seed of B. napus cultivar ‘Topas DH16516’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Dilantha Fernando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, M.H., Hausner, G. & Fernando, W.G.D. Molecular and phenotypic identification of B-genome introgression linked to Leptosphaeria maculans resistant gene Rlm6 in Brassica napus × B. juncea interspecific hybrids. Euphytica 214, 205 (2018). https://doi.org/10.1007/s10681-018-2287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2287-z

Keywords

Navigation