Skip to main content

Advertisement

Log in

Transcriptome characterization and differential expression analysis of disease-responsive genes in alfalfa leaves infected by Pseudopeziza medicaginis

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Common leaf spot (CLS) which caused by Pseudopeziza medicaginis is a serious foliar disease in alfalfa. Here, we report a differential expression model of transcriptome between leaves from a CLS-resistant line (RI vs. Rck) and a CLS-susceptible line (SI vs. Sck) after inoculation with P. medicaginis using RNA-seq technology on genome-wide. De novo assembling of clean reads generated 83,625 transcripts with 35,061 unigenes, of which, 85% were found to be able to match the reference genes. 3304 differentially expressed genes (DEGs) were detected in RI versus Rck library while 4276 DEGs were found in SI versus Sck library. Gene ontology function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of these DEGs were performed in this work, and the results showed that some categories were significantly enriched in RI versus Rck library and not in SI versus Sck library including response to stimulus, response to stress, oxidation–reduction process, and oxidoreductase activity while KEGG pathway analysis suggested that plant-pathogen interaction was one of the main biological pathways in which DEGs in RI versus Rck library were enriched, but not that for DEGs in SI versus Sck library. Furthermore, about only 20 DEGs showed obviously being up-regulated in RI versus RCK library and being down-regulated or not being detected in SI versus SCK library and the analysis on the signal transduction pathways related to these DEGs indicated that both SA-mediated signal transduction pathway and ET-mediated signal transduction pathway were related to the CLS resistance of alfalfa. In this work, we comprehensively and systematically characterized the molecular basis of alfalfa in response to P. medicaginis for the first time. The information resulted from this study is useful for future investigating the mechanism of CLS resistance on molecular level in alfalfa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  PubMed  CAS  Google Scholar 

  • Barnes DK, Goplen RP, Baylor JE (1988) Alfalfa and alfalfa improvement. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison

    Google Scholar 

  • Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z et al (2002) Expression profile matrix of Arabidopsis transcription factor genes predict their putative functions in response to environmental stresses. Plant Cell 14(3):559–574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung HS, Howe GA (2009) A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21(1):131–145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conesa A, Göz S, García-Gómez JM, Terol J, Talón M, Robles M et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • dos Reis SP, Lima AM, de Souza CRB (2012) Recent molecular advances on downstream plant responses to abiotic stress. Int J Mol Sci 13:8628–8647

    Article  PubMed  PubMed Central  Google Scholar 

  • Durrant WE, Rowland O, Piedras P, Hammond-Kosack KE, Jones JD (2000) cDNA-AFLP reveals a striking overlap in the race-specific resistance and wound response gene expression profiles. Plant Cell 12(6):963–977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan H, Wang F, Gao H, Wang L, Xu J, Zhao Z (2011) Pathogen-induced mdWRKY1 in ‘Qinguan’ apple enhances disease resistance. J Plant Biol 54(3):150–158

    Article  CAS  Google Scholar 

  • Fan XD, Wang JQ, Yang N, Dong YY, Liu L, Wang FW et al (2013) Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought stress by high-throughput Illumina sequencing. Gene 512:392–402

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Chen Z, Luo M, Peng H, Lin H, Qin C et al (2014) Genome expression profile analysis of the maize sheath in response to inoculation to R. solani. Mol Biol Rep 41:2471–2483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He R, Kim MJ, Nelson W, Balbuena TS, Kim R, Kramer R et al (2012) Next-generation sequencing-based transcriptomic and proteomic analysis of the common reed, Phragmites australis (Poaceae), reveals genes involved in invasiveness and rhizome specificity. Am J Bot 99(2):232–247. https://doi.org/10.3732/ajb.1100429

    Article  PubMed  CAS  Google Scholar 

  • Kakumanu A, Ambavaram MMR, Klumas C, Krishnan A, Batlang U, Myers E et al (2012) Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-seq. Plant Physiol 160(2):846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNASeq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16(2):319–331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Acharya A, Farmer AD, Crow JA, Bharti AK, Kramer RS et al (2012) Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing. BMC Genomics 13:568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu M, Gao J, Yin F, Gong G, Qin C, Ye K et al (2015) Transcriptome analysis of maize leaf systemic symptom infected by Bipolaris zeicola. PLoS ONE 10(3):e0119858. https://doi.org/10.1371/journal.pone.0119858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mainer A, Leath KT (1978) Foliar diseases alter carbohydrate and protein levels in leaves of alfalfa and orchardgrass. Phytopathology 68:1252–1255

    Article  CAS  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA et al (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26(4):403–410

    Article  PubMed  CAS  Google Scholar 

  • Meng F, Yuan QH, Su DR, Gao JM (2008) Selection and validation of ISSR markers of common leaf spot disease resistance-related gene in tetraploid alfalfa. Plant Prot 34(4):46–50 (in Chinese)

    CAS  Google Scholar 

  • Morgan WC, Parbery DG (1977) Effects of Pseudopeziza leaf spot disease on growth and yield in Lucerne. Aust J Agric Res 28:1029–1040

    Article  CAS  Google Scholar 

  • Morgan WC, Parbery DG (1980) Depressed fodder quality and increased oestrogenic activity of lucerne infected with Pseudopeziza medicaginis. Aust J Agric Res 31:1103–1110

    Article  Google Scholar 

  • Mysore KS, Crasta OR, Tuori RP, Folferts O, Swirshy PB, Martin GB (2002) Comprehensive transcript profiling of the Pto- and Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato. Plant J 32(3):299–315

    Article  PubMed  CAS  Google Scholar 

  • Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, Corio-Costet MF et al (2007) Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiol Plant 131(3):434–447

    Article  PubMed  CAS  Google Scholar 

  • Nutter FW Jr, Guan J, Gotlieb AR, Rhodes LH, Grau CR, Sulc RM (2002) Quantifying alfalfa yield losses caused by foliar diseases in Iowa, Ohio, Wisconsin, and Vermont. Plant Dis 86:269–277

    Article  Google Scholar 

  • Obert DE, Skinner DZ, Stuteville DL (2000) Association of AFLP markers with downy mildew resistance in autotetraploid alfalfa. Mol Breed 6:287–294

    Article  CAS  Google Scholar 

  • Ozeretskovskaya OL (2007) Immune response. In: Dzhavakhiya VG, Ozeretskovskaya OL, Zinovyeva SV (eds) Comprehensive and molecualr phytopathology. Elsevier, Netherlands, pp 265–314

    Google Scholar 

  • Pandini A, Fornili A, Fraternali F, Kleinjung J (2013) GSATools: analysis of allosteric communication and functional local motions using a structural alphabet. Bioinformatics 29(16):2053–2055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S et al (2003) TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19(5):651–652

    Article  PubMed  CAS  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed  CAS  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15(5):247–258

    Article  PubMed  CAS  Google Scholar 

  • Sharma J, Chakraverty N (2013) Mechanism of plant tolerance in response to heavy metals. In: Rout GR, Das AB (eds) Molecular stress physiology of plants. Springer India, New Delhi, pp 289–308

    Chapter  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR et al (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468(7322):400–405. https://doi.org/10.1038/nature09430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G (2007) The tify family previously known as ZIM. Trends Plant Sci 12(6):239–244

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Wei Z, Lam TW, Wang J (2011) Next generation sequencing has lower sequence coverage and poorer SNP-detection capability in the regulatory regions. Sci Rep 1:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Bi B, Yuan QH, Li XL, Gao JM (2012a) Association of AFLP and SCAR markers with common leaf spot resistance in autotetraploid alfalfa (Medicago sativa). Genet Mol Res 11(1):606–616

    Article  PubMed  CAS  Google Scholar 

  • Wang XS, Liu Y, Jia YY, Gu HY, Ma HY, Yu T et al (2012b) Transcriptional responses to drought stress in root and leaf of chickpea seedling. Mol Biol Rep 39:8147–8158

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Xu L, Chen Y, Shen H, Gong Y, Limera C et al (2013) Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to lead (Pb) stress with next generation sequencing. PLoS ONE 8(6):e66539. https://doi.org/10.1371/journal.pone.0066539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ward JA, Ponnala L, Weber CA (2012) Strategies for transcriptome analysis in nonmodel plants. Am J Bot 99:267–276

    Article  PubMed  CAS  Google Scholar 

  • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S et al (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan X, Dong C, Yu J, Liu W, Jiang C, Liu J et al (2013) Transcriptome profile analysis of young floral buds of fertile and sterile plants from the self-pollinated offspring of the hybrid between novel restorer line NR1 and Nsa CMS line in Brassica napus. BMC Genomics 14:26. https://doi.org/10.1186/1471-2164-14-29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:293–297

    Article  Google Scholar 

  • Ye HY, Du H, Tang N, Li XH, Xiong LZ (2009) Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol 71(3):291–305

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Song G, Gao J, Li Y, Guo D, Fan Q et al (2014) Transcriptome characterization and differential expression analysis of cold-responsive genes in young spikes of common wheat. J Biotechnol 189:48–57

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Yao B, Zhang M, Wang S, Zhang H, Xiao W et al (2013) Comparative analysis of differentially expressed genes in Sika deer antler at different stages. Mol Biol Rep 40(2):1665–1676

    Article  PubMed  CAS  Google Scholar 

  • Zheng WJ, Ma L, Zhao JM, Li ZQ, Sun FY, Lu XC (2013) Comparative transcriptome analysis of two rice varieties in response to rice stripe virus and small brown plant hoppers during early interaction. PLoS ONE 8(12):e82126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yuehui Chao, Beijing Forest University, for his enlightening discussions, and Professor Zhi Gui, Tianjin Agricultural University, for helpful comments on this manuscript.

Funding was provided by the Conservation of Forage Genetic Resources Program (Grant No. 2130135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10681_2018_2204_MOESM1_ESM.zip

Table S1. GO function annotation of assembled transcripts. Table S2. Up or down regulated genes in RI and RCK libraries. Table S3. Up or down regulated isoforms in RI and RCK libraries. Table S4. Up or down regulated genes in SI and SCK libraries. Table S5. Up or down regulated isoforms in SI and SCK libraries. Table S6. GO function enrichment analysis of up regulated transcripts in RI and RCK libraries. Table S7. GO function enrichment analysis of down regulated transcripts in RI and RCK libraries. Table S8. GO function enrichment analysis of up regulated transcripts in SI and SCK libraries. Table S9. GO function enrichment analysis of down regulated transcripts in SI and SCK libraries. Table S10. KEGG pathway enrichment analysis of up regulated transcripts in RI and RCK libraries. Table S11. KEGG pathway enrichment analysis of down regulated transcripts in RI and RCK libraries. Table S12. KEGG pathway enrichment analysis of up regulated transcripts in SI and SCK libraries. Table S13. KEGG pathway enrichment analysis of down regulated transcripts in SI and SCK libraries. Table S14. DEGs involved in disease resistance in RI and RCK libraries. Table S15. DEGs involved in disease resistance in SI and SCK libraries. (ZIP 26021 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Huang, H., Wang, Y. et al. Transcriptome characterization and differential expression analysis of disease-responsive genes in alfalfa leaves infected by Pseudopeziza medicaginis. Euphytica 214, 126 (2018). https://doi.org/10.1007/s10681-018-2204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2204-5

Keywords

Navigation