Aisawi KAB, Reynolds MP, Singh RP, Foulkes MJ (2015) The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Sci 55:1749–1764
Article
Google Scholar
Barreto HJ, Edmeades GO, Chapman SC, Crossa J (1997) The alpha lattice design in plant breeding and agronomy: generation and analysis. In: Edmeades GO, Bänziger M, Mickelson HR, Pena-Valdivia CB (eds) Developing drought and low N-tolerant maize. Proceedings of a symposium. March 25–29, 1996, CIMMYT, El Batán, Mexico. CIMMYT, Mexico DF, Mexico pp 544–551
Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. doi:10.18637/jss.v067.i01
Article
Google Scholar
Braun HJ, Atlin G, Payne T (2010) Multi-location testing as a tool to identify plant response to global climate change. In: Reynolds MP (ed) Climate change and crop production UK, CABI Climate Change Series, Wallingford, UK, pp 115–138
Cossani CM, Reynolds MP (2015) Heat stress adaptation in elite lines derived from resynthesized hexaploid wheat. Crop Sci 55:2719–2735
CAS
Article
Google Scholar
Crespo-Herrera LA, Crossa J, Huerta-Espino J, Autrique E, Mondal S, Velu G, Vargas M, Braun HJ, Singh RP (2017) Genetic yield gains in CIMMYT’s international elite spring wheat yield trials by modeling the genotype × environment interaction. Crop Sci 57:789–801
Article
Google Scholar
Eagles HA, Cane K, Trevaskis B, Vallance N, Eastwood RF, Gororo NN, Kuchel H, Martin PJ (2014) Ppd1, Vrn1, ALMT1 and Rht genes and their effects on grain yield in lower rainfall environments in southern Australia. Crop Pasture Sci 65:159
CAS
Article
Google Scholar
Fischer RA, Byerlee D, Edmeades GO (2014) Crop yields and food security: will yield increases continue to feed the world? ACIAR Monogr., vol 158. Australian Centre for Int. Agric. Res., Canberra
Foulkes MJ, Slafer GA, Davies WJ, Berry PM, Sylvester-Bradley R, Martre P, Calderini DF, Griffiths S, Reynolds MP (2011) Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot 62(2):469–486
CAS
Article
PubMed
Google Scholar
Ghanem ME, Marrou H, Sinclair TR (2014) Physiological phenotyping of plants for crop improvement. Trends Plant Sci 20:139–144
Article
PubMed
Google Scholar
Gourdji SM, Mathews KL, Reynolds MP, Crossa J, Lobell DB (2012) An assessment of wheat breeding gains in hot environments. Proc R Soc B: Biol Sci 280:1752–1760
Article
Google Scholar
Griffiths S, Wingen L, Pietragalla J, Garcia G, Hasan A, Miralles D, Calderini DF, Ankleshwaria JB, Waite ML, Simmonds J, Snape J, Reynolds M (2015) Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat germplasm. PLoS ONE 10(3):e0118847. doi:10.1371/journal.pone.0118847
Article
PubMed
PubMed Central
Google Scholar
Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363
Article
PubMed
Google Scholar
Langridge P, Reynolds M (2015) Genomic tools to assist breeding for drought tolerance. Curr Opin Biotechnol 32:130–135
CAS
Article
PubMed
Google Scholar
Limon-Ortega A, Sayre KD, Francis CA (2000) Wheat nitrogen use efficiency in a bed planting system in Northwest Mexico. Agron J 92:303–308
Article
Google Scholar
Millet EJ, Welcker C, Kruijer W, Negro S, Coupel-Ledru A, Nicolas SD, Laborde J, Bauland C, Praud S, Ranc N, Presterl T, Tuberosa R, Bedo Z, Draye X, Usadel B, Charcosset A, Van Eeuwijk F, Tardieu F (2016) Genome-wide analysis of yield in Europe: allelic effects vary with drought and heat scenarios. Plant Physiol 172:749–764
CAS
PubMed
PubMed Central
Google Scholar
Ortiz R, Braun H, Crossa J, Crouch J, Davenport G, Dixon J, Dreisigacker S, Duveiller E, He Z, Huerta J, Joshi A, Kishii M, Kosina P, Manes Y, Mezzalama M, Morgounov A, Murakami J, Nicol J, Ortiz Ferrara G, Ortiz-Monasterio I, Payne T, Pena J, Reynolds MP, Sayre K, Sharma R, Singh R, Wang J, Warburton M, Wu H, Iwanaga M (2008) Wheat genetic resources enhancement by the international maize and wheat improvement center (CIMMYT). Genet Resour Crop Evol 55:1095–1140
Article
Google Scholar
Pask AJD, Pietragalla J, Mullan DM, Reynolds MP (eds) (2012) Physiological breeding II: a field guide to wheat phenotyping. CIMMYT, Mexico DF
Google Scholar
Pask A, Joshi AK, Manes Y, Sharma I, Chatrath R, Singh GP, Sohu VS, Mavi GS, Sakuru VSP, Kalappanavar IK, Mishra VK, Arun B, Mujahid MY, Hussain M, Gautam NR, Barma NCD, Hakim A, Hoppitt W, Trethowan R, Reynolds MP (2014) A wheat phenotyping network to incorporate physiological traits for climate change in South Asia. Field Crops Res 168:156–167
Article
Google Scholar
R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
Reynolds M, Langridge P (2016) Physiological breeding. Curr Opin Plant Biol 31:162–171
Article
PubMed
Google Scholar
Reynolds MP, Saint Pierre C, Saad ASI, Vargas M, Condon AG (2007) Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in diverse germplasm under drought and heat stress. Crop Sci 47(S3):172–189
Google Scholar
Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G (2012) Achieving yield gains in wheat. Plant, Cell Environ 35:1799–1823
Article
Google Scholar
Reynolds MP, Tattaris M, Cossani CM, Ellis M, Yamaguchi-Shinozaki K, Saint Pierre C (2015) Exploring genetic resources to increase adaptation of wheat to climate change. In: Ogihara Y, Takumi S, Handa H (eds) Advances in wheat genetics: from genome to field. Springer, Tokyo
Google Scholar
Reynolds MP, Braun HP, Cavalieri AJ, Chapotin S, Davies WJ, Ellul P, Feuillet C, Govaerts B, Kropff MJ, Lucas H, Nelson J, Powell W, Quilligan E, Rosegrant MW, Singh RP, Sonder K, Tang H, Visscher S, Wang R (2017) Improving global integration of crop research. Science 357(6349):359–360. doi:10.1126/science.aam8559
Richards RA (2006) Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric Water Manag 80:197–211. doi:10.1016/j.agwat.2005.07.013
Article
Google Scholar
Rutkoski, J, Poland JP, Mondal S, Autrique E, González Pérez L, Crossa J, Reynolds M, Singh R (2016) Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 Genes Genomes Genet 6:2799–2808
Sehgal D, Vikram P, Sansaloni CP, Ortiz C, Pierre CS, Payne T, Ellis M, Amri A, Petroli CD, Wenzl P, Singh S (2015) Exploring the gene bank biodiversity for wheat improvement. PLoS ONE 10(7):e0132112
Article
PubMed
PubMed Central
Google Scholar
Sharma RC, Crossa J, Velu G, Huerta-Espino J, Vargas M, Payne TS, Singh RP (2012) Genetic gains for grain yield in CIMMYT spring bread wheat across international environments. Crop Sci 52(4):1522–1533
Article
Google Scholar
Slafer GA, Savin R (1994) Source-sink relationship and grain mass at different positions within the spite in wheat. Field Crops Res 37(1):39–49. doi:10.1016/0378-4290(94)90080-9
Article
Google Scholar
Sukumaran S, Crossa J, Jarquin D, Reynolds M (2017) Genomic prediction with pedigree and genotype × environment interaction in spring wheat grown in South and West Asia, North Africa, and Mexico. G3: genes, genomes. Genetics 7(2):481–495
Google Scholar
Tattaris M, Reynolds MP, Chapman SC (2016) A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Front Plant Sci 7:1131. doi:10.3389/fpls.2016.01131
Article
PubMed
PubMed Central
Google Scholar
Wei T, Simko V (2016) Corrplot: visualization of a correlation matrix. R package version 0.77. http://CRAN.R-project.org/package=corrplot
Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421
Article
Google Scholar